IN THE CIRCUIT COURT OF THE ELEVENTH JUDICIAL CIRCUIT IN AND FOR MIAMI-DADE COUNTY, FLORIDA

CASE NO: <u>2021-015089-CA-01</u> SECTION: <u>CA43</u> JUDGE: <u>Michael Hanzman</u>

In re:

Champlain Towers South Collapse Litigation

RECEIVER'S EMERGENCY MOTION FOR ENTRY OF ORDER AUTHORIZING RECEIVER TO SIGN PERMIT APPLICATION REQUESTED BY MIAMI-DADE COUNTY AUTHORIZING BOFAM CONSTRUCTION COMPANY, INC. TO UNDERTAKE EMERGENCY WORK TO BRACE THE <u>RETAINMENT WALLS AT THE PROPERTY</u>

Michael I. Goldberg (the "Receiver"), pursuant to Rule 4 of the Complex Business Litigation Rules, seeks entry, on an emergency basis, of an order authorizing the Receiver to sign a permit application requested by the Miami-Dade County Department of Regulatory and Economic Resources (the "County") authorizing Bofam Construction Company, Inc. ("Bofam") to undertake emergency work to brace the retainment walls at the former site of the Champlain Tower South Condominium located at 8777 Collins Avenue, Surfside, Florida 33154 (the "Property"). In support of this Motion, the Receiver states as follows:

1. At a hearing conducted on July 2, 2021 the Court ordered the appointment of Michael I. Goldberg as receiver for the Champlain Tower South Condominium Association.

2. This receivership is the result of multiple lawsuits that were filed after the tragic collapse of the Champlain Tower Condominium previously built on the Property.

3. The County maintains control over the Property as the County and NIST investigate the circumstances leading up to the collapse of the Champlain Tower South Condominium. The County has notified the Receiver that it believes that the retaining walls at the Property need to be buttressed for life safety reasons, otherwise, the retaining walls are at the risk of collapsing potentially causing personal injury to those at or near the Property as well as property damage to the site and nearby structures, including adjacent roadways.

4. To that end, the County has hired Bofam to perform the necessary work to secure the retaining walls. The work Bofam intends to perform is more fully set forth in the engineering plans attached to this Motion as **Composite Exhibit "A"**.

5. The County has assured the Receiver that the work to be undertaken is necessary for life-safety reasons and will be undertaken in a manner best designed to preserve the evidence in accordance with this Court's prior orders. The Receiver is not an engineering expert and is relying on the County and its experts that the work to be undertaken is necessary and will preserve the evidentiary value of the Property as best as possible under the exigent circumstances.

6. The Receiver is technically the "owner" of the Property even though the Property is currently under the County's control. Accordingly, the County has requested the Receiver to execute the Permit Application filed by Bofam. A true and correct copy of the Permit Application is attached hereto as **Exhibit B**. The Permit Application identifies the Applicant, provides the Applicant's Contractor and Qualifier Numbers and a \$500,000 estimate for the emergency shoring work to be performed. Bofam seeks issuance of a new permit authorizing it to perform emergency shoring work in respect of the Property.

7. The Receiver has informed the County that he will not execute the permit application unless and until he receives Court authorization to do so, and only after notice and a hearing in which all parties in interest have an opportunity to consider the Motion and express their position to the Court with respect to the intended work and its potential impact on the Property.

8. The Receiver has conferred with lead counsel for the Plaintiffs who, in turn, has conferred with his group, and Plaintiffs have no objection to the relief requested in this Motion.

2

WHEREFORE, the Receiver respectfully requests that the Court enter an Order authorizing him to approve or sign-off on the Permit Application, to the extent necessary, and grant such other, further and related relief as may be appropriate under the circumstances.

Dated: August 5, 2021

Respectfully submitted,

BERGER SINGERMAN, LLP Counsel for the Receiver 1450 Brickell Ave., Ste. 1900 Miami, Florida 33131 Telephone: (305) 755-9500 Fax: (305) 714-4340

By: <u>s/ Paul Steven Singerman</u>

Paul Steven Singerman Florida Bar No. 378860 Jordi Guso Florida Bar No. 863580 Paul A. Avron Florida Bar No. 50814 DRT@bergersingerman.com Singerman@bergersingerman.com Jguso@bergersingerman.com pavron@bergersingerman.com MDiaz@bergersingerman.com

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that on August 5, 2021, a copy of the foregoing was electronically filed with the Clerk of Court by using the Florida Courts E-Filing Portal, which served a copy of same to all counsel of record through the Florida Court's E-Filing Portal. I further certify that a true and correct copy of the foregoing was served by electronic transmission and first class, U.S. Mail on August 5, 2021, upon all parties on the attached Service List.

By: <u>s/Paul Steven Singerman</u> Paul Steven Singerman

SERVICE LIST

Austin Akinrin, President Bofam Construction Co., Inc. 1600 NW 3rd Avenue Miami, FL 33136 <u>austin@bofaminc.com</u>

COMPOSITE EXHIBIT "A"

GENERAL NOTES

CODES

- 1. FLORIDA BUILDING CODE 2020
- 2. A.S.C.E. 7-16 FOR WIND ANALYSIS
- 3. ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE
- 4. AISC 14TH EDITION
- AASHTO BRIDGE DESIGN SPECIFICATIONS 2017

LOADS - DESIGN CRITERIA

 WIND PARAMETERS: "ROOF" HEIGHT

10'-0"

BASIC	WIND	VELOCITY:	196	MPH	(ULT)
					1/

RISK CATEGORY:	IV
EXPOSURE	С

Kd 0.85

PARTIALLY ENCLOSED BUILDING INTERNAL PRESSURE COEFFICIENT: +/-0.55

- 2. OTHERS LOADS:
 - LIVE SURCHARGE: 480 PCF

FOUNDATIONS

1. EXISTING STRUCTURAL CONCRETE SLAB. THICKNESS VARIES BETWEEN 6½" TO 9" (BASED ON INFORMATION PROVIDED IN MICRO FIELD MEASUREMENTS AND INFORMATION PROVIDED BY THE CONTRACTOR) SUPPORTED ON PILES.

- 2. SOIL PARAMETERS USED:
 - Ka= 0.33
 - γDry= 100pcf
 - γSat= 120pcf
 - $-\gamma SW = 65 pcf$

CONCRETE AND REINFORCING STEE

1. SUBMIT CONCRETE MIX DESIGN TO ENGINEER FOR REVIEW PRIOR TO POURING.

2. ALL NORMAL-WEIGHT CONCRETE MUST BE MIXED IN ACCORDANCE WITH ACI 301 TO ACHIEVE A MINUMUM 28-DAY COMPRESSIVI 5,000PSI. WATER/CEMENT RATIO MUST BE 0.40 MAX. BY WEIGHT UON ON PLANS AND 0.15 MAX. WATER-SOLUBLE CHLORIDE ION CONCRETE (PERCENT BY WEIGHT OF CEMENT) IN ACCORDANCE TO TABLE 4.3.1 OF ACI 318-08.

3. SLUMP SHALL BE 4" (±1).

4. CONTRACT AN INDEPENDENT TESTING LABORATORY TO PERFORM THE CONCRETE CYLINDER SAMPLING AND TESTING AS REQUIRE BUILDING CODE, 2020. SUBMIT TEST REPORTS TO ENGINEER.

5. AGGREGATES TO BE CLEAN AND WELL GRADED, MAX. SIZE 1". VERTICAL DROP NOT TO EXCEED 8'-0".

6. NO ADDITIONAL WATER SHALL BE ADDED TO THE CONCRETE MIX AT THE JOBSITE UNLESS PREVIOUSLY APPROVED.

7. PROVIDE ALL FORMING AND TEMPORARY SHORING.

SECT 3/8''=1'-

STRUCTURAL CALCULATIONS

PROJECT: PROPOSED RETAINING WALL BRACING FOR CHAMPLAIN TOWERS COLLAPSE SITE ADDRESS: 8777 COLLINS AVENUE, SURFSIDE, FL, 33154

APPLICABLE CODES

- FBC 2020
- ASCE 7-16
- AASHTO BRIDGE DESIGN SPECIFICATIONS
- ACI 318-14
- AISC 14TH EDITION

These Calculations contain manual and computer-generated structural calculations. Computations were performed to the best of my knowledge according to sound and generally accepted engineering principals and Code requirements. The sign and seal provided herein is meant to cover all computation sheets pages 1 through 15.

> Masood Hajali, PhD, P.E. Florida Reg.: 82038

PROJECT: PROPOSED RETAINING WALL BRACING FOR CHAMPLAIN TOWERS COLLAPSE SITE ADDRESS: 8777 COLLINS AVENUE, SURFSIDE, FL, 33154

TABLE OF CONTENTS

1.	DESIGN CRITERIA	3
2.	LOADS AND PARAMETERS	4
3.	RETAINING WALL LOAD ANALYSIS	6
4.	BEAM AND BRACING DESIGN	9

Computer Programs Used:

- Mecawind
- Enercalc

1. DESIGN CRITERIA

Design Parameters

- Florida Building Code, 2020 Edition
- Wind Parameters:
 - ASCE 7-16
 - Wind Velocity= 195 MPH (ULT)
 - Risk Category= IV
 - Exposure= D
 - Mean Height=10'-0"
 - Kd= 0.85
 - GCpi= ±0.55

Materials Used

- Existing Concrete Strength at 28 days f'c=3,000psi (as per Microfilm Sheet S-11 of S-14)
- Existing Reinforcing fy=60,000psi (as per Microfilm Sheet S-11 of S-14)
- Structural Steel Tubes ASTM A500 GrB fy=46,000psi
- Structural Steel Plates ASTM A36 fy=36,000psi

Design Loads

• Refer to Section 2.

Foundation Parameters

• Existing Concrete Structural Slab on Piles and Fill (6 ½" to 9" Thickness).

2. LOADS AND PARAMETERS

LIVE SURCHARGE

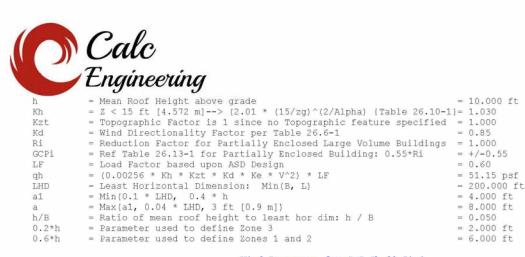
LS=

480pcf

WIND LOADS (AWAY FROM SURFACE) (SEE REPORT BELOW)

WLat= 89.2psf (ASD)

SOIL PARAMETERS


Ka=	0.33
γDry=	100pcf
γSat=	120pcf
γSW=	65pcf

WIND LOADS FOR PARTIALY ENCLOSED

MecaWind v2340

Software Developer: Meca Enterprises Inc., www.meca.biz, Copyright © 2018

Basic Wind Parameters	
Wind Load Standard = ASCE 7-16 Exposure Category	= D
Wind Design Speed = 195.0 mph Risk Category	= II
Structure Type = Building Building Type	= Partially Enclose
General Wind Settings	
Incl_LF = Include ASD Load Factor of 0.6 in Pressures	= True
DynType = Dynamic Type of Structure	= Rigid
NF = Natural Frequency of Structure (Mode 1) Zg = Altitude (Ground Elevation) above Sea Level	= 1.000 Hz
Zg = Altitude (Ground Elevation) above Sea Level	= 0.000 ft
Bdist = Base Elevation of Structure	= 0.000 ft
SDB = Simple Diaphragm Building	= False
zi = Level of highest opening in building or zero to use h	= 0.0 ft
Reacs = Show the Base Reactions in the output	= False
MWFRSType = MWFRS Method Selected	= No Analysis
Topographic Factor per Fig 26.8-1	
Topo = Topographic Feature	= None
Kzt = Topographic Factor	= 1.000
Building Inputs	
RoofType: Building Roof Type = Flat RfHt : Roof Height	
W : Building Width = 310.000 ft L : Building Length	
Frames : Incl Transverse Frames= False n : Number of Frame	
e : Solidity Ratio = 0.350 Par : Is there a Para	apet = False
Aog : Tot Area of Openings= 0.00 sq ft Vi : Unpart Int Volu	ume = 0.00 ft^3
Exposure Constants per Table 26.11-1:	
and the second	26.11-1= 700.000 ft
At: Const from Table 26.11-1= 0.087 Bt: Const from Table 2	
Am: Const from Table 26.11-1= 0.111 Bm: Const from Table 2	
C: Const from Table 26.11-1= 0.150 Eps: Const from Table 2	26.11-1= 0.125
Overhang Inputs:	
<pre>Std = Overhangs on all sides are the same</pre>	= True
OHType = Type of Roof Wall Intersections	= None
Components and Cladding (C&C) Calculations per Ch 30 Part 1:	
h/W = Ratio of mean roof height to building width	= 0.032
h/k = Ratio of mean roof height to building length	= 0.050

Wind Pressures for C&C Ch 30 Pt 1 All wind pressures include a load factor of 0.6

Description ft	Zone	Width ft	Span ft	Area sq ft	1/3 Rule	Ref Fig	GCp Max	GCp Min	P Max psf	P Min psf
Wall	5	1.000	7.000	16.33	Yes	30.3-1	0.866	-1.192	72.43	-89.11

Area = Span Length x Effective Width

1/3 Rule = Effective width need not be less than 1/3 of the span length

GCp = External Pressure Coefficients taken from Figures 30.3-1 through 30.3-7 p = Wind Pressure: gh*(GCp - GCpi) [Eqn 30.3-1]*

p = Wind Pressure: qh*(GCp - GCpi) [Eqn 30.3-1]*
* Per Para 30.2.2 the Minimum Pressure for C&C is 9.60 psf [0.460 kPa] [Includes LF]
Since Roof Slope <= 10 Deg, the GCp value is reduced by 10%</pre>

RETAINING WALL LOAD CASES FACTORS

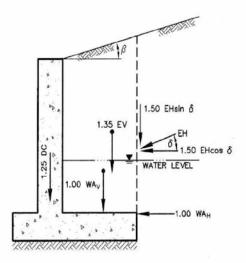
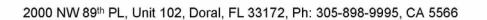



Figure C11.5.6-1—Typical Application of Load Factors for Bearing Resistance

/ˈsoil / conc) pcf) pcf		γs soil 120 pcf γ w 65 pcf
	LOAD	CASE EH		
H (ft)		Centroid (ft)	PEH(lb/ft)	
7	0.33	2.33	809	Loads for strength I
8	0.33	2.67	1056	
9	0.33	3.00	1337	
10	0.33	3.33	1650	
			jile- 18	Pts=LSKaH ↔ 8"
	LOAD	CASE WA		
H (ft)	Ка	Centroid (ft)	PEH(lb/ft)	EH=1/2KaH ^{2t} y'+y _w)
7	0.33	2.33	526	H/2
8	0.33	2.67	686	H/3
9	0.33	3.00	869	
10	0.33	3.33	1073	γ _u KaH γ'KaH LSKa
		Heq=4ft & q=48		Loads for strength III
H (ft)	_	Centroid (ft)		
7	0.33	3.50	1109	
8	0.33	4.00	1267	8"
9	0.33	4.50	1426	PW ₅ =WsH
10	0.33	5.00	1584	-+ + + H EH=1/2KaH ² (y'+y _w)
	ASE WS W/ qw			
H (ft)	Centroid (ft)) PWs(lb/ft)	1	
7	3.50	624	1	y _n KaH y′KaH Ws • • • •
8	4.00	714	1	
9	4.50	803	1	
10	5.00	892	1	

3. RETAINING WALL LOAD ANALYSIS

WALL ACTNG AS SIMPLY SUPPORTED BEAM

EH	T			So	il pressure			
H (ft)	Centroid (ft)	PEH(lb/ft)	a (ft)	b (ft)	Top R (lb)	Bot R (lb)	B in L/3 (lb-ft)	B in L/2 (lb-ft)
7	2.33	808.50	4.67	2.33	270	539	1258	314
8	2.67	1056.00	5.33	2.67	352	704	1877	469
9	3.00	1336.50	6.00	3.00	446	891	2673	668
10	3.33	1650.00	6.67	3.33	550	1100	3667	917
WA	1			Hudros	tatic pressure			
H (ft)	Centroid (ft)	PEH(lb/ft)	a (ft)	b (ft)	Top R (lb)	Bot R (lb)	B in L/3 (lb-ft)	B in 1/2 (lb-ft)
7	2.33	525.53	4.67	2.33	175	350	817	204
8	2.67	686.40	5.33	2.67	229	458	1220	305
9	3.00	868.73	6.00	3.00	290	579	1737	434
10	3.33	1072.50	6.67	3.33	358	715	2383	596
	0.00	10/10/2	0.07	0.00				
PLS				Live	surcharge			
H (ft)	0.00	0.00	a (ft)	b (ft)	Top R (lb)	Bot R (lb)	B in L/3 (lb-ft)	B in L/2 (lb-ft)
7	3.50	1108.80	3.50	3.50	554	554	1940	1294
8	4.00	1267.20	4.00	4.00	634	634	2534	1690
9	4.50	1425.60	4.50	4.50	713	713	3208	2138
10	5.00	1584.00	5.00	5.00	792	792	3960	2640
Strength I)								
hear superposition			Top R (lb)					Bot R (lb)
Factor/	1.5	1	1.75	Ult	Unfactored	1.5	1	1.75
H (ft)	Gs	Gw	LS	Gs+Ls+Gw	Gs+Ls+Gw	Gs	Gw	LS
7	270	175	554	1550	999	539	350	554
8	352	229	634	1866	1214	704	458	634
9	446	290	713	2205	1448	891	579	713
	100000				There are a second	Total States	and the second sec	The second second

2000 NW 89th PL, Unit 102, Doral, FL 33172, Ph: 305-898-9995, CA 5566

Moment superposition		16 ₂	B in L/3 (lb	-ft)				B in L/2 (lb-ft)	1
Factor/	1.5	1	1.75	Ult	Unfactored	1.5	1	1.75	U
H (ft)	Gs	Gw	LS	Gs+Ls+Gw	Gs+Ls+Gw	Gs	Gw	LS	G
7	1258	817	1294	4968	3369	314	204	1940	
8	1877	1877	1690	7650	5444	469	305	2534	
9	2673	2673	2138	10425	7484	668	434	3208	
10	3667	3667	2640	13787	9973	917	596	3960	
PWS		-		v	Vind load]
H (ft)	0.00	0.00	a (ft)	b (ft)	Top R (lb)	Bot R (lb)	B in L/3 (lb-ft)	B in L/2 (lb-ft))
7	3.50	624.40	3.50	3.50	312	312	1093	728	
8	4.00	713.60	4.00	4.00	357	357	1427	951	
9	4.50	802.80	4.50	4.50	401	401	1806	1204	
10	5.00	892.00	5.00	5.00	446	446	2230	1487	
Strength III) Shear superposition	(S. 8)	~	Top R (Ik				1.4	Bot R (Ib)	
Factor/	1.5	1	1.4	Ult	Unfactored	1.5	1	1.4	Ult
H (ft)	Gs	Gw	WS	Gs+Ls+Gw	Gs+Ls+Gw	Gs	Gw	WS	G
7	270	175	312	1017	757	539	350	554	0.
8	352	229	357	1256	938	704	458	634	+
9	446	290	401	1520	1136	891	579	713	+
10	550	358	446	1807	1354	1100	715	792	+
			16 19976					00 (1995), MARY	
Moment superposition			B in L/3 (lb	-ft)			4	B in L/2 (lb-ft)	í
Factor/	1.5	1	1.4	Ult	Unfactored	1.5	1	1.4	Ult
H (ft)	Gs	Gw	WS	Gs+Ls+Gw	Gs+Ls+Gw	Gs	Gw	LS	G
7	1258	817	728	3724	2804	314	204	1093	
8	1877	1877	951	6025	4706	469	305	1427	
9	2673	2673	1204	8368	6550	668	434	1806	
									_

2000 NW 89th PL, Unit 102, Doral, FL 33172, Ph: 305-898-9995, CA 5566

4. BEAM AND BRACING DESIGN

Beam Design at top of Wall)

Span=

10'-0" (Multiple)

From Previous Section, for Critical Case Strength I, Uniform Load = 1700plf (Unfactored)

From attached calculations use HSS 6"x6"x3/8".

ReactionsRMax=17.0kips (ASD) for Typical Span

Brace Design)

Max. Span=	8'/sin45=11'-4"
Point Load=	17kips (ASD)
Max. Axial=	17/sin45=24.1kips

Reactions

Pmax=	17kips (ASD)
Vmax=	17*1.51=25.7kips (ULT)

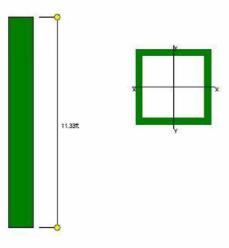
From attached calculations use HSS 4"x4"x3/8" w/3/4"x12"x16" base plate and (6) 5/8"Diameter Hilti HAS Rods SS 304 w/HIT-RE 500V3 Epoxy (4" emb.)

Check Welds	
For ¼" E70xx,	
Vall=	3.71kip/in
Available Length=	4/sin45=5.65in *2=11.3in
Allowable Shear=	3.71*11.3=42kips > 17kips OK (See attached table)

Multi-Span Steel Beam

Description Steel Beam

General Information					Code Ref: /	AISC 9th ASD	, 1997 UBC, 2	003 IBC, 2003	NFPA 5000
Fy - Yield Stress	-	46.00 ksi	Loa	d Duration Fa	ctor	1.00			
Spans Considered	Contin	nuous Over Su	pports						
Span Information									
Description Span Steel Section	ft	10.00 HSS6X6X3/8	10.00 HSS6X6X3/8	10.00 HSS6X6X3/8	10.00 HSS6X6X3/8	10.00 HS56X6X3/8	10.00 HSS6X6X3/8	10.00 HSS6X6X3/8	10.00 HSS6X6X3/
End Fixity Unbraced Length	ft	Pin-Pin 10.00	Pin-Pin 10.0						
Loads									
Live Load Used This Spa	in ?	Yes	Ye						
Dead Load Live Load	k/ft k/ft	1.700	1.700	1.700	1.700	1.700	1.700	1.700	1.700
Results									
Mmax @ Cntr @ X =	k-ft ft	13.22 3.93	5.76 5.27	7.45 4.93	7.01	7.01 5.00	7.45 5.07	5.76 4.73	13.22 6.07
Max @ Left End Max @ Right End	k-ft k-ft	0.00	-17.96 -13.14	-13.14 -14.46	-14.46 -14.02	-14.02 -14.46	-14.46 -13.14	-13.14 -17.96	-18.0 0.00
fb : Actual Fb : Allowable	psi psi	16,372.2 27,600.0 Bending OK	16,372.2 27,600.0 Bending OK	13,177.6 27,600.0 Bending OK	13,177.6 27,600.0 Bending OK	13,177.6 27,600.0 Bending OK	13,177.6 27,600.0 Bending OK	16,372.2 27,600.0 Bending OK	16,372.2 27,600.0 Bending OK
fv : Actual Fv : Allowable	psi psi	2,458.5 18,400.0 Shear OK	2,144.7 18,400.0 Shear OK	2,061.0 18,400.0 Shear OK	2,040.1 18,400.0 Shear OK	2,040.1 18,400.0 Shear OK	2,061.0 18,400.0 Shear OK	2,144.7 18,400.0 Shear OK	2,458.5 18,400.0 Shear OK
Reactions & Deflect	ions								
Shear @ Left Shear @ Right Reactions	k k	6.70 10.30	8.98 8.02	8.37 8.63	8.54 8.46	8.46 8.54	8.63 8.37	8.02 8.98	10.30 6.70
DL @ Left LL @ Left	k k	0.00 6.70	0.00 19.28	0.00	0.00 17.18	0.00	0.00 17.18	0.00 16.39	0.0
Total @ Left DL @ Right	K K K	6.70 0.00 19.28	19.28 0.00 16.39	16.39 0.00 17.18	17.18 0.00 16.91	16.91 0.00 17.18	17.18 0.00	16.39 0.00	19.2
LL @ Right Total @ Right	ĸ	19.28	16.39	17.18	16.91	17.18	16.39 16.39	19.28 19.28	6.7 6.7
Max. Deflection @ X = Span/Deflection Ratio	in ft	-0.168 4.40 714.8	-0.041 5.33 2.917.8	-0.074 4.93 1.628.8	-0.065 5.00 1,835.4	-0.065 5.00 1,835.4	-0.074 5.07 1,628.8	-0.041 4.67 2,917.8	-0.168 5.60 714.8


		Steel	Column			
escription Steel B	race					
eneral Information			Code Ref. A	AISC 9th ASD, 1	997 UBC, 2003	IBC, 2003 NFPA 5
Steel Section H	SS4X4X3/8	Fy	46.00 k	si X-	X Sidesway :	Restrained
		Duration Factor	1.000	Y-	Y Sidesway :	Restrained
Column Height	11.330 ft	Elastic Modulus	29,000.00 k	si		
End Fixity	Pin-Pin	X-X Unbraced	11.330 ft	К	CX	1.000
Live & Short Term Loads C	ombined	Y-Y Unbraced	11.330 ft	Ky	ſy	1.000
pads						
Axial Load					de la composición de	
Dead Load	1		Ecc. for X-X Axis	Moments	0.000 in	
Live Load	24.10		Ecc. for Y-Y Axis	Moments	0.000 in	
Short Term Load	,	¢.				
Summary	_				Colu	mn Design OK
AISC Formula H1 - 1 AISC Formula H1 - 2 AISC Formula H1 - 3			0.3189 0.1827	0.3189 0.1827	0.318 0.182	5.6.1
XX Axis : Fa calc'd per Eq. E YY Axis : Fa calc'd per Eq. E						
YY Axis : Fa calc'd per Eq. E						
YY Axis : Fa calc'd per Eq. E	2-1. K*L/r < Cc	Dead	Live_	_DL+LL	_DL + Sh	ort_
YY Axis : Fa calc'd per Eq. E resses	2-1. K*L/r < Cc	<u>Dead</u> 15.81 ksi	<u>Live</u> 15.81 ksi	<u>DL + LL</u> 15.81	and the second sec	ort
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress	2-1. K*L/r < Cc	A DATA DATA AND A DATA AND A DATA	The second se	15.81	and the second sec	A DATE OF THE ADDRESS
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable	2-1. K*L/r < Cc	15.81 ksi	15.81 ksi	15.81	l ksi 4 ksi	15.81 ksi
YY Axis : Fa calc'd per Eq. E cresses Allowable & Actual Stress Fa : Allowable fa : Actual	2-1. K*L/r < Cc	15.81 ksi 0.00 ksi	15.81 ksi 5.04 ksi	15.81 5.04 27.60	l ksi 4 ksi	15.81 ksi 5.04 ksi
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1]	2-1. K*L/r < Cc	15.81 ksi 0.00 ksi 27.60 ksi	15.81 ksi 5.04 ksi 27.60 ksi	15.81 5.04 27.60	I ksi I ksi I ksi I ksi	15.81 ksi 5.04 ksi 27.60 ksi
YY Axis : Fa calc'd per Eq. E cresses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual	2-1. K*L/r < Cc	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi	15.81 5.04 27.60 0.00 27.60	I ksi I ksi I ksi I ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual Fb:yy : Allow [F3.1] fb : yy Actual	2-1. K*L/r < Cc	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi 27.60 ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi	15.81 5.04 27.60 0.00 27.60	I ksi 1 ksi) ksi) ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual Fb:yy : Allow [F3.1] fb : yy Actual	2-1. K*L/r < Cc	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi 27.60 ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi	15.81 5.04 27.60 0.00 27.60 0.00	I ksi 1 ksi) ksi) ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual Fb:yy : Allow [F3.1] fb : yy Actual malysis Values	2-1, K*L/r < Cc ses	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi	15.81 5.04 27.60 0.00 27.60 0.00	I ksi I ksi) ksi) ksi) ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual Fb:yy : Allow [F3.1] fb : yy Actual nalysis Values F'ex : DL+LL	2-1. K"L/r < Cc ses	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi Cm:x DL	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi +LL +LL	15.81 5.04 27.60 0.00 27.60 0.60 C	I ksi I ksi I ksi I ksi I ksi I ksi I ksi	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi 1.00
YY Axis : Fa calc'd per Eq. E resses Allowable & Actual Stress Fa : Allowable fa : Actual Fb:xx : Allow [F3.1] fb : xx Actual Fb:yy : Allow [F3.1] fb : yy Actual nalysis Values Fex : DL+LL Fey : DL+LL	2-1, K*L/r < Cc ses 17,408 psi 17,408 psi	15.81 ksi 0.00 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi Cm:x DL Cm:y DL	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi +LL +LL +LL	15.81 5.04 27.60 0.00 27.60 0.60 C 0.60 C	I ksi I ksi I ksi I ksi I ksi I ksi Ib:x DL+LL	15.81 ksi 5.04 ksi 27.60 ksi 0.00 ksi 27.60 ksi 0.00 ksi 1.00 1.00

Rev: 580002		St	eel Column		
Description S	teel Brace				
Section Properties	HSS4X4X3	/8			
Depth	4.000 in	Weight	16.24 #/ft	Values for LRFD	Design
Web Thick	0.349 in	Ixx	10.300 in4	J	17.500 in4
Width	4.000 in	lyy	10.300 in4	Cw	9.14 in6
Flange Thick	0.349 in	Sxx	5.130 in3	Zx	6.390 in3
Area	4.78 in2	Syy	5.130 in3	Zy	6.390 in3
Rt	0.000 in	Rxx	1.470 in		0.000
		Ryy	1.470 in		
	Section Type	= HSS-Square			

Sketch & Diagram

Steel Column Base Plate

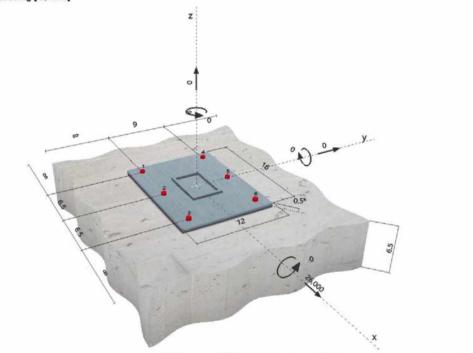
Description

Base Plate

eneral Information			Code Ref : AISC 9th Ed AS	D, 1997 UBC, 2003 IBC, 2003 NFPA 500
Loads Axial Load X-X Axis Moment	20.00 k 0.00 k-ft		Steel Section Section Length Section Width Flange Thickness Web Thickness	HSS4x4x3/8 4.000 in 4.000 in 0.349 in 4.000 in
Plate Dimensions Plate Length Plate Width Plate Thickness	16.000 in 12.000 in 0.688 in		Allowable Stresses Concrete fc Base Plate Fy Load Duration Factor	3,000.0 psi 36.00 ksi 1.000
Support Pier Size Pier Length Pier Width	36.000 in 36.000 in		Anchor Bolt Data Dist. from Plate Edge Bolt Count per Side Tension Capacity Bolt Area	1.500 in 3 5.500 k 0.442 in2
Summary				Baseplate OK
Concrete Bearing Stress Actual Bearing Stress	s Bearing S	tress OK 104.2 psi		
Allow per ACI318-95, / = 0.3 * f*c * Sqrt(A2 Allow per AISC J9		1,800.0 psi 2,100.0 psi	Full Bearin	ng : No Bolt Tension
Plate Bending Stress Actual fb Max Allow Plate Fb	Thickness	OK 24,601.7 psi 27,000.0 psi		
Tension Bolt Force Actual Tension Allowable	Bolt Tensi	on OK 0.000 k 5.500 k		

Table 5.13.1 Allowable Resistance of Fillet Welds, kips/in. (Shielded Metal Arc Welding)

	Allow	Allowable Shear in Fillet Welds, R_w , (kips/in. of weld)					
Nominal Size	Effective Throat A (AISC-1.14.6)		Minimum	Tensile	Strength of	Weld (ksi)	
(in.)	(in.)	60'	70	80	-90	100	110
1/8	0.088	1.59	1.86	2.12	2.39	2.69	2.92
3/16	0.132	2.38	2.78	3.18	3.58	3.97	4.37
1/4	0.177	3.18	3.71 .	4.24	4.77	5.30	5.83



www.hilti.us			Profis Anchor 2.9
Company:		Page:	1
Specifier:		Project:	CT Collapse Site
Address:		Sub-Project Pos. No.:	Base Anchors
Phone I Fax:		Date:	8/3/2021
E-Mail:			
Specifier's commer	its:		

1 Input data	MATTER MATTER
Anchor type and diameter:	HIT-RE 500 V3 + HAS-R 304/316 SS 5/8
Effective embedment depth:	h _{et,act} = 4.000 in. (h _{et,limit} = - in.)
Material:	ASTM F 593
Evaluation Service Report:	ESR-3814
Issued I Valid:	1/1/2020 1/1/2021
Proof:	Design method ACI 318-08 / Chem
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate:	I _x x I _y x t = 16.000 in. x 12.000 in. x 0.500 in.; (Recommended plate thickness: not calculated
Profile:	Rectangular HSS (AISC), HSS6X4X.375; (L x W x T) = 6.000 in. x 4.000 in. x 0.375 in.
Base material:	cracked concrete, 3000, f_c = 3,000 psi; h = 6.500 in., Temp. short/long: 32/32 °F
Installation:	hammer drilled hole, Installation condition: Dry
Reinforcement:	tension: condition B, shear: condition B; no supplemental splitting reinforcement present
	edge reinforcement: none or < No. 4 bar
Seismic loads (cat. C, D, E, or F)	no

^R - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			FIONS ANCHOL 2.3.2
Company:		Page:	2
Specifier:		Project:	CT Collapse Site
Address:		Sub-Project I Pos. No.:	Base Anchors
Phone I Fax: E-Mail:	1	Date:	8/3/2021

2 Proof I Utilization (Governing Cases)

		Design v	values [lb]	Utilization		
Loading	Proof	Load	Capacity	βN / BV [%]	Status	
Tension		-	-	-/-	-	
Shear	Pryout Strength (Bond Strength controls)	26,000	36,715	-/71	OK	
Loading	βΝ	βv	ζ	Utilization $\beta_{N,V}$ [%]	Status	
Combined tension	and shear loads -	-		-	-	

3 Warnings

1 11.1

· Please consider all details and hints/warnings given in the detailed report!

Fastening meets the design criteria!

4 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

EXHIBIT "B"

NOTE: ALL SHEETS MUST BE REVIEWED

DEPARTMENT OF REGULATORY AND ECONOMIC RESOURCES Herbert S. Saffir Permitting and Inspection Center 11805 SW 26th Street (Coral Way), • Miami, Florida 33175-2474 • (786) 315-2000

Job Address 8777 Collins Avenue Folio 14-2235-025- Lot			Contractor No. CGC062660 Last four (4) digits of Qualifier No. 6086 Contractor Name Bofam Construction Co. Inc Qualifier Name Gbolahan Austin Akinrin Address 1600 NW 3rd Avenue City Miami State FL zip 33136	
[√] Building* Category 015 [] Electrical [] Mechanical [] Plumbing [] LPGX	_ [] Extension	OWNER'S NAME	Owner <u>Miami Dade County - Police</u> Address 9105 NW 25 Street City <u>Doral</u> <u>State FL</u> Zip <u>33172</u> Phone Last four (4) digits of Owner's Social Security No	
	d Aveue State FL Zip <u>33136</u>	ARCHITECT	Name Calc Engineering Address 200 NW 89 Place, Unit 102 City_Doral State FL Zip_33172 Phone (305) 898-9995	
Name		TCAG	Name Address CityStateZip Phone	

OWNER'S/PERMIT APPLICANT AFFIDAVIT 1 certify that all of the foregoing information is accurate. I certify that I am not a named violator with: unpaid civil penalties; unpaid administrative costs of hearing; unpaid County investigative, enforcement, testing, or manitoring costs; or unpaid liens, any or all of which are owed to MiamiDade County pursuant to the provisions of the Code of MiamiDade County, Florida. WARNING TO OWNER: YOUR IALUPE TO RECORD A NOTICE OF COMMENCEMENT MAY RESULT IN YOU PAVING TWICE FOR THE TO YOUR PROPERTY.

IF YOU INTEND TO OBTAIN FINANCING, CONSULT WITH YOUR ATTORN "The issuance of the permit does not relieve the property owner from a authorizes work that is in violation of any association rule or regulation."	EY OR LENDER BEFORE RECORDING YOUR NOTICE OF FORMENCEMENT obtaining homeowner's association approval (if required) prior to beginning and work and in no way
Signature of Owner or Owner's Agent	Signature of Qualifier_
PRINT NAME	PRINT NAME GIPCLARIAN AUSTIN ARIN RIN
STATE OF FLORIDA COUNTY OF MIAMI-DADE	STATE OF FLORIDA COUNTY OF MIAMI-DADE
Sworn to and subscribed before me this	Sworn to and subscribed before me this
day of, 20	doy of Algerist 2021
by	by Gloslancen Alsmutheonin
Signature of Notary Public	Signature of Notary Public
Print Name	Print Name Protection Phylophia Bryan
(SEAL)	(SEAL)
Personally known	Personally known Trace Bonded Through - Cynanctary
or Produced Identification	or Produced Identification

or Produced Identification-

Department of Regulatory and Economic Resources

Environmental Resources Management 701 NW 1st Court, 6th Floor Miami, Florida 33136-3912 T 305-372-6567 F 305-372-6407

miamidade.gov

Class V Dewatering Permit Application Form

For Departmental Use Only	
Date Received: A	pplication #:
Fee Received: \$	racking #:
 ☐6 days or less \$52 ☐ 7-30 days \$635.0 ☐ 31-90 days \$980.0 Note: After-the-Fact Permit applications will be charged departmental administrative enforcement costs. ☐ Complete description of dewatering operation **** ☐ Complete dewatering operation calculations*** ☐ Site Plan (site plan shall include project be sedimentation tanks, turbidity barriers, discharge p 	XTENDED, a new permit application will be required. alendar days prior to the time of permit expiration.
Location: 8777 Collins Avenue, Surfside, FL 33154 Section: Township: Municipality: Proposed starting date: 8/1/2021 Estin	After the Fact Permit
3. Applicant Information: This should be the applicant's information for contact purposes. Name: Austin Akinrin Company: Bofam Construction Co, Inc Address: 1600 NW 3rd Avenue Miami, FL Zip Code: 33136 Phone #: 754-245-0102 Fax: 305-675-9269 Email: Austin@bofaminc.com	4. Applicant's Authorized Permit Agent: Agent is authorized to process the application, furnish supplemental information relating to the application and bind the applicant to all requirements of the application. Name:
Company: Bofam Construction Co, Inc Address: 1600 NW 3rd Avenue, Miami, FL	zip Code: 33136
Phone #: 754-245-0102 Fax#: 305-675-9269	Email: Austin@bofaminc.com

6. Performance Bond and/or Mitigation Fee: (to be assessed by Water Control Section)

- This permit may require a performance bond to guarantee that work is accomplished according to plan and that no impact to adjacent properties is generated as a result of the permitted dewatering activity.
- A mitigation fee may be required to compensate for any loss of or impact to natural resources due to the extent and duration of the dewatering activity.

Application is hereby made for a Miami-Dade County Class V permit to authorize the activities described herein. I agree to or affirm

7. APPLICANT AFFIRMATION:

the following:

 I possess the authority to au I am familiar with the informa To the best of my knowledge I will apprise the Department I will provide any additional i project will comply with the aris completed, and I am authorizing the permit arinformation relating to this ap I agree to provide entry to the identification or documents arobservation of permitted act 	ation, date and plans co e and belief, the informat of any changes to infor- information, evidence of applicable State and Co agent listed in Section 4 oplication and bind the e project site to inspect as required by law, for t vities.	ontained in this a ation, data and p rrmation provided r data necessary punty water quali of this application applicant to all re- tors and authoriz	pplication, and lans submitted d in this applic to provide rea- ty standards b on to process equirements o ted representa	d are true, complete a ation, and asonable assurance th oth during constructio the application, furnish f this application, and tives of Miami-Dade 0	hat the proposed in and after the project h supplemental County, with proper	
Signature of Applicant	Print A	pplicant's Name		Date		
B. IF APPLICANT IS OTHER TH	IAN AN INDIVIDUAL	OR NATURA	L PERSON			
(Examples: Corporation, Partners Bofam Construction	and the second	Corp				
Print Name of Applicant (Enter the complete		Type (Corp, LL	CLLP, etc.)	State of Registration	n/Incorporation	
Under the penalty of perjury, I cert Applicant, and if so required, to au proof of such authority to the Depa documents, operating agreements (ATTACHMENT 'A'').	thorize the issuance of artment). Please Note: or other applicable a	of a bond on be If additional singreements or la	half of the Ap gnatures are aws, you mus Preside	pplicant. (If asked, yo required, pursuant t attach additional s	ou must provide o your governing ignature pages 8/3/2021	
Signature of Authorized Representative	Print Authorized Represe		Title	har manifest list as	Date	
C. IF APPLICANT IS A JOINT V	ENTURE Each party	must sign below	(If more than	two members, list on a	attached page)	
Print Name of Applicant (Enter the complete name as registered)		Type (Corp, LLC LLP, etc.) State of		State of Registration	e of Registration/Incorporation	
Print Name of Applicant (Enter the comple	Type (Corp, LL	C LLP, etc.)	State of Registration	n/Incorporation		
Under the penalty of perjury, I cert Applicant, and if so required to au proof of such authority to the Depa documents, operating agreements (ATTACHMENT "A").	horize the issuance of artment). Please Note:	of a bond on bel : If additional si	half of the Ap gnatures are	plicant. (If asked, yo required, pursuant t	ou must provide to your governing	
Signature of Authorized Representative	Print Authorized Represe	entative's Name	Title		Date	
Signature of Authorized Representative	Print Authorized Represe	entative's Name	Title		Date	