IN THE CIRCUIT COURT OF THE ELEVENTH JUDICIAL CIRCUIT IN AND FOR MIAMI-DADE COUNTY, FLORIDA

CASE NO: 2021-015089-CA-01 SECTION: CA43 JUDGE: Michael Hanzman

In re:

Champlain Towers South Collapse Litigation

RECEIVER'S EMERGENCY MOTION FOR ENTRY OF ORDER AUTHORIZING
 RECEIVER TO SIGN PERMIT APPLICATION REQUESTED BY MIAMI-DADE COUNTY AUTHORIZING BOFAM CONSTRUCTION COMPANY, INC. TO UNDERTAKE EMERGENCY WORK TO BRACE THE WEST RETAINMENT WALL AT THE PROPERTY

Michael I. Goldberg (the "Receiver"), pursuant to Rule 4 of the Complex Business Litigation Rules, seeks entry, on an emergency basis, of an order authorizing the Receiver to sign a permit application requested by the Miami-Dade County Department of Regulatory and Economic Resources (the "County") authorizing Bofam Construction Company, Inc. ("Bofam") to undertake emergency work to brace the west retainment wall at the former site of the Champlain Tower South Condominium located at 8777 Collins Avenue, Surfside, Florida 33154 (the "Property"), so that additional lanes of Collins Avenue adjacent to the west side of the Property can safely be opened. ${ }^{1}$ In support of this Motion, the Receiver states as follows: ${ }^{2}$

[^0]1. At a hearing conducted on July 2, 2021 the Court ordered the appointment of Michael I. Goldberg as receiver for the Champlain Tower South Condominium Association.
2. This receivership is the result of multiple lawsuits that were filed after the tragic collapse of the Champlain Tower Condominium previously built on the Property.
3. The County maintains control over the Property as the County and NIST investigate the circumstances leading up to the collapse of the Champlain Tower South Condominium. The County has notified the Receiver that it believes that the west retaining wall at the Property needs to be buttressed so that additional lanes of Collins Avenue adjacent to the west side of the Property can safely be opened.
4. To that end, the County has hired Bofam to perform the necessary work to buttress the west retaining wall. The work Bofam intends to perform is more fully set forth in the engineering plans attached to this Motion as Composite Exhibit "A".
5. In connection with the work to be performed, Bofam commissioned and obtained a safety report (the "Safety Report") from Calc Engineering, LLC ("Calc"). A copy of the Safety Report is attached hereto as Exhibit "B". ${ }^{3}$ As depicted in pictures on page 25 and 26 and discussed on page 7 of the Safety Report, rebar is sticking out of the western retaining wall in a haphazard manner and there is also some loose concrete hanging from the west retaining wall. Pursuant to the Safety Report, in order for Bofam to safely be able to undertake the work necessary to buttress the west retaining wall, Calc is recommending that the rebar on the west retaining wall

[^1]be cut and that the loose concrete on the west retaining wall be removed prior to Bofam undertaking work to buttress the west retaining wall.
6. The Receiver is unsure as to whether or not the rebar and loose concrete that the County seeks permission to remove have evidentiary value. ${ }^{4}$ The Receiver requested the County to ask Bofam if the work could be performed without cutting or in any way altering the rebar or loose concrete and the County has informed the Receiver that it is not possible.
7. The County has assured the Receiver that the work to be undertaken is necessary for life-safety reasons and will be undertaken in a manner best designed to preserve the evidence in accordance with this Court's prior orders. The Receiver is not an engineering expert and is relying on the County and its experts that the work to be undertaken is necessary and will preserve the evidentiary value of the Property as best as possible under the exigent circumstances.
8. The Receiver is technically the "owner" of the Property even though the Property is currently under the County's control. Accordingly, the County has requested the Receiver to execute the Permit Application filed by Bofam. A true and correct copy of the Permit Application is attached hereto as Exhibit "C". The Permit Application identifies the Applicant, provides the Applicant's Contractor and Qualifier Numbers and a $\$ 362,685$ estimate for the emergency shoring work to be performed. Bofam seeks issuance of a new permit authorizing it to perform emergency shoring work in respect of the Property.
9. The Receiver has informed the County that he will not execute the permit application unless and until he receives Court authorization to do so, and only after notice and a

[^2]hearing in which all parties in interest have an opportunity to consider the Motion and express their position to the Court with respect to the intended work and its potential impact on the Property.
10. The Receiver has conferred with lead counsel for the Plaintiffs who, in turn, has conferred with his group, and Plaintiffs have no objection to the relief requested in this Motion.
11. The Receiver and the County are well aware that some parties in interest may strenuously object to the work intended to be done by Bofam—especially the cutting of rebar and the removal of loose cement along the west retaining wall and the small portion of the adjoining walls prior to them having a chance to view the west retaining wall in its current state. To that end, the Receiver and the County have discussed the possibility of granting parties in interest the opportunity, with the Court's authorization, to enter the Property prior to Bofam commencing work to view and/or film the west retaining wall in its current state. The Receiver and the County are understandably concerned that the current state of the exposed rebar and lose cement is extremely dangerous and people may get hurt if granted access prior to Bofam completing its work. ${ }^{5}$ Notwithstanding, the County agrees to permit parties in interest who are pre-approved by the Court to access the Property for the limited purpose of viewing and/or filming the west retaining wall prior to Bofam commencing work if: (i) the Court's order permitting access to such persons makes it clear that neither the County nor the Receiver shall have any liability whatsoever in the event a person is injured while on the Property; (ii) each person who enters the Property executes a release and hold harmless agreement prior to entering the Property releasing the Receiver and County from any and all claims that may arise by virtue of them entering the Property; (iii) the party in interest who requests access to the Property provides the Receiver and County with an insurance policy in the amount of $\$ 2$ million naming both the County and the

[^3]Receiver as additional insureds under such policy; and (iv) the party in interest agrees to be bound by the Access Protocol (once finalized) ${ }^{6}$ with respect to it or its agents entering the Property; and (v) each person who enters the Property shall be required to wear a N 95 or equivalent mask, steel toe construction boots, a helmet and a reflective vest. ${ }^{7}$

WHEREFORE, the Receiver respectfully requests that the Court enter an Order authorizing him to approve or sign-off on the Permit Application, to the extent necessary, and grant such other, further and related relief as may be appropriate under the circumstances.

Dated: August 31, 2021
Respectfully submitted,
BERGER SINGERMAN, LLP
Counsel for the Receiver
1450 Brickell Ave., Ste. 1900
Miami, Florida 33131
Telephone: (305) 755-9500
Fax: (305) 714-4340
By: s/ Paul Steven Singerman
Paul Steven Singerman
Florida Bar No. 378860
Jordi Guso
Florida Bar No. 863580
Paul A. Avron
Florida Bar No. 50814
DRT@bergersingerman.com
Singerman@bergersingerman.com
Jguso@bergersingerman.com
pavron@,bergersingerman.com
MDiaz@bergersingerman.com
Fsellers@bergersingerman.com

[^4]
CERTIFICATE OF SERVICE

I HEREBY CERTIFY that on August 31, 2021, a copy of the foregoing was electronically filed with the Clerk of Court by using the Florida Courts E-Filing Portal, which served a copy of same to all counsel of record through the Florida Court's E-Filing Portal. I further certify that a true and correct copy of the foregoing was served by electronic transmission and first class, U.S Mail on August 31, 2021, upon all parties on the attached Service List.

By: s/Paul Steven Singerman

Paul Steven Singerman

SERVICE LIST

Austin Akinrin, President
Bofam Construction Co., Inc.
1600 NW $3^{\text {rd }}$ Avenue
Miami, FL 33136
austin@bofaminc.com

COMPOSITE EXHIBIT "A"

PROJECT:	Champlain Towers South
	8777 Collins Ave. Surfside, FL 33184

\square
RC No.:

2108249

Temporary Structure Structural Calculations

DESCRIPTION:

Temporary Re-shoring \&
Lateral Bracing Members
Evaluation

DATE:

August 23, 2021

No. OF PAGES:
Digitally signed by Eduardo J

Cover +36

O.L.\#:600338-8
E.B.\#: 26946

Eduardo Canto, P.E. Structural Engineer FL. No.: 56845

Codes:

(1) FBC 2020, $7^{\text {th }}$ Edition

Materials:
(1) Concrete, $\quad \mathrm{f}^{\circ} \mathrm{c}=3,000 \mathrm{psi}$ (U.O.N., Minimum)
(2) Reinforcing Steel, fy $=60,000$ psi - ASTM A 615, Grade 60 (U.O.N.)
(3) Structural Steel, $\quad \mathrm{Fy}=50,000 \mathrm{psi}-$ ASTM A 992, Grade 50 (U.O.N.)
(4) Plywood, Structural Grade 1 (As per APA table 3, attached):
$\mathrm{Fb}=1,190 \mathrm{psi}$ (U.O.N.)
Load Duration Factor: $\mathrm{Fb}=1,488 \mathrm{psi}$ (U.O.N.)
(5) AISC (ASD 14th Ed.)
(6) NDS 2018
(7) $\mathrm{ACl} 347.2 \mathrm{R}-05$. Guide for Shoring/Re-shoring of Concrete Multistory Buildings
(5) Wood, Southern Pine No. 2 (Typical for all members):

Single Member. $\quad \mathrm{Fb}=1,100 \mathrm{psi}$ (U.O.N.)
(8) ADM 1-2015
(6) Anchor Rods, ASTM A 307 (U.O.N.)
(7) Bolting Materials, ASTM A 325 or A 490 (U.O.N.)

Table of Content:

Page	Description
1	Design criteria
2	Design loads and wall bracing loading
16	Bracing members check
20	Adhesive anchors check
22	Equipment capacity tables

Code Search

Code: ASCE 7-16

Occupancy:

Occupancy Group =
B Business

Risk Category \& Importance Factors:

Risk Category $=$	II
Wind factor $=$	1.00
Snow factor $=$	1.00
Seismic factor $=$	1.00

Type of Construction:

Fire Rating:

$$
\begin{array}{ll}
\text { Roof }= & 0.0 \mathrm{hr} \\
\text { Floor }= & 0.0 \mathrm{hr}
\end{array}
$$

Building Geometry:

Roof angle (θ)	$0.00 / 12$	0.0 deg
Building length	95.5 ft	
Least width	0.0 ft	
Mean Roof Ht (h)	10.5 ft	
Parapet ht above grd	10.5 ft	
Minimum parapet ht	0.0 ft	

Live Loads:

Roof	0 to $200 \mathrm{sf}:$
200 to $600 \mathrm{sf}:$	$24-0.02$ Area, but not less than 12 psf
over $600 \mathrm{sf}:$	12 psf

Floor:

Typical Floor	40 psf
Partitions	15 psf
Lobbies \& first floor corridors	100 psf
Corridors above first floor	80 psf
Balconies (1.5 times live load)	60 psf

Wind Loads:

Ultimate Wind Speed	175 mph
Nominal Wind Speed	135.6 mph
Risk Category	II
Exposure Category	D
Enclosure Classif.	Open Building
Internal pressure	$+/-0.00$
Directionality (Kd)	0.85
Kh case 1	1.030
Kh case 2	1.030
Type of roof	Monoslope

Topographic Factor (Kzt)

Topography		Flat
Hill Height	(H)	0.0 ft
Half Hill Length (Lh)	0.0 ft	
Actual H/Lh	$=$	0.00
Use H/Lh	$=$	0.00
Modified Lh $=$	0.0 ft	
From top of crest: $x=$	0.0 ft	
Bldg up/down wind?	downwind	

downwind

$$
\begin{array}{ll}
\mathrm{H} / \mathrm{Lh}=0.00 & \mathrm{~K}_{1}=0.000 \\
x / \mathrm{Lh}=0.00 & \mathrm{~K}_{2}=0.000 \\
z / \mathrm{Lh}=0.00 & \mathrm{~K}_{3}=1.000
\end{array}
$$

At Mean Roof Ht:

$$
\mathrm{Kzt}=\left(1+\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}\right)^{\wedge} 2=1.00
$$

2D RIDGE or 3D AXISYMMETRICAL HILL
Flexible structure if natural frequency $<1 \mathrm{~Hz}$ ($\mathrm{T}>1$ second). If building $\mathrm{h} / \mathrm{B}>4$ then may be flexible and should be investigated.
h/B = \#DIV/0! \#DIV/0!
$\mathbf{G}=\quad 0.85$ Using rigid structure default
Rigid Structure

Rigid		Structure
$\overline{\mathrm{e}}$	$=$	0.13
ℓ	$=$	650 ft
$\mathrm{Z}_{\text {min }}$	$=$	7 ft
c	$=$	0.13
$\mathrm{~g}_{\mathrm{a}}, \mathrm{g}_{\mathrm{v}}$	$=$	3.4
$\mathrm{~L}_{\mathrm{z}}$	$=$	535.5 ft
Q	$=$	0.97
I_{z}	$=$	0.16
G	$=$	0.91 use $\mathrm{G}=0.85$

Flexible or Dynamically Sensitive Structure 34 1cy $\left(\eta_{1}\right)=0.0 \mathrm{~Hz}$
Damping ratio $(\beta)=0$
$/ b=0.80$
$/ \alpha=\quad 0.11$
$\mathrm{Vz}=\quad 172.8$
$\mathrm{N}_{1}=0.00$
$\mathrm{K}_{\mathrm{n}}=0.000$
$R_{h}=28.282 \quad \eta=0.000 \quad h=10.5 \mathrm{ft}$
$\mathrm{R}_{\mathrm{B}}=28.282$
$R_{L}=28.282$
$g_{R}=0.000$
$R=0.000$
Gf $=0.000$
\qquad

Enclosure Classification

Test for Enclosed Building:
Test for Open Building: All walls are at least 80% open.
Ao $\geq 0.8 \mathrm{Ag}$
Test for Partially Enclosed Building: Predominately open on one side only

Conditions to qualify as Partially Enclosed Building. Must satisfy all of the following:
Ao ≥ 1.1 Aoi
Ao $>$ smaller of 4^{\prime} or 0.01 Ag
Aoi / Agi ≤ 0.20
Where:
$A o=$ the total area of openings in a wall that receives positive external pressure.
$\mathrm{Ag}=$ the gross area of that wall in which Ao is identified.
Aoi = the sum of the areas of openings in the building envelope (walls and roof) not including Ao.
Agi $=$ the sum of the gross surface areas of the building envelope (walls and roof) not including Ag.
Test for Partially Open Building: A building that does not qualify as open, enclosed or partially enclosed.
(This type building will have same wind pressures as an enclosed building.

Reduction Factor for large volume partially enclosed buildings (Ri):

If the partially enclosed building contains a single room that is unpartitioned, the internal pressure coefficient may be multiplied by the reduction factor Ri.

Total area of all wall \& roof openings (Aog):		0 sf
Unpartitioned internal volume (Vi):	$\mathrm{Ri}=\quad$	cf
	1.00	

Ground Elevation Factor (Ke)

Grd level above sea level $=\quad 0.0 \mathrm{ft}$
$\mathrm{Ke}=1.0000$
Constant $=0.00256 \quad$ Adj Constant $=0.00256$

DATE
\qquad
DATE

Wind Factor	$=$	1.00	
Gust Effect Factor $(G)=$	0.85 Ultimate Wind Speed $=$	175 mph	
Kzt	$=$	1.00	Exposure $=$

A. Solid Freestanding Walls \& Solid Signs (\& open signs with less than $\mathbf{3 0 \%}$ open)

B. Open Signs \& Single-Plane Open Frames (openings 30\% or more of gross area)

Height to centroid of Af (z)	0.0 ft			$\begin{array}{r} \mathrm{Kz}= \\ \text { Base pressure }(\mathrm{qz})= \end{array}$	$\begin{aligned} & 1.030 \\ & 68.7 \mathrm{psf} \end{aligned}$
Width (zero if round)	1.0 ft				
Diameter (zero if rect)	0.0 ft			$\mathrm{F}=\mathrm{q}_{\mathrm{z}} \mathrm{GC} \mathrm{C}_{\mathrm{t}} \mathrm{A}_{\mathrm{f}}=$	0.0 Af
Percent of open area		$1=$	0	Solid Area: $\mathrm{A}_{\mathrm{f}}=$	10.0 sf
to gross area	0.0\%	$\mathrm{C}_{1}=$	2	$F=$	0 lbs
Directionality (Kd)	0.85			Design sig	solid sign

3. Where soil has a very low friction coefficient, or for some clay subsoils where cohesion is low or unreliable, and the required depth of key is impracticable, the base may be supported on battered piles.

* Larger of: Class B for"M and ℓ_{d} for" $O^{\prime \prime}$

ELEVATION-WALL BARS

Fig. 14-2 Notation for Dimensions and Structural Reinforcement for Wall Heights $>\mathbf{1 0}^{\prime}$

Fig. 14-3 Shrinkage and Temperature Bars in Exposed Face (When Used)

(a) No frost
(b) Frost depth $\approx(A+K)$
(c)Intermediate

Fig. 14-4 Designs to Prevent Horizontal Sliding

Soil Data and Assumed Properties. Three classes of soil are considered as backfill and bearing. See Table 14-1. Class A would qualify as nearly ideal backfill - easily drained and creating least lateral pressure, $30 \mathrm{~h}(\mathrm{psf})$, where h is height, in feet, below top of wall. Class $B, 45 \mathrm{~h}$ (psf), includes many more naturally occurring combinations of soils suitable for engineering purposes. Class C level backfill is equivalent to water pressure, 62.5 h (p sf). It may include mistures of various compositions of ${ }^{\text {factual soils in place or even }}$ allow for partial height water tables in Class A or Class B backfills.

Class of Soll	$\boldsymbol{\gamma}$ Max wt . pst	Internal Friction	μ Friction for Silding	Horizontal Preszure		Sloping Rockilil *			
						Active Horiz Comp.	Active Vert Comp.	Slope	
				Active pst	Passive pas				
								Angle A	Coten
A	105	$\geq 33^{\circ}-45^{\prime \prime}$	0.55	30h	368h	80h	30h	$35^{\circ}-41^{\prime}$	1/2: 1
B	135	$\geq 30^{\circ}$	0.55	45h	405h	70h	40h	29 ${ }^{\circ}-45^{\prime}$	17/c1
C	132	$\geq 20^{\circ}-50^{\circ}$	0.45	62.5 h	279 h	50h	45h	$18^{\circ}-26^{\prime}$	3:1

Table 14-1 Soil Properties Used for Design
Class A includes clean sand, gravel, broken stone, free of fines that might obstruct free drainage.
Class B includes granular soils, mixed grain sizes, dense enough to cause low permeability.
Class C includes fine, silty sands; granular soils with some clay; some glacial tills. Note that the basic horizontal pressure is liquid pressure. Class C backfill designs will also suffice for some combinations of Class A or Class B soils, with partial height water table, thus extending applicability of these designs.

COST CONSIDERATIONS IN WALL DESIGN

Less Thickness - More Flexural Steel. Use of the minimum thickness structurally possible for walls principally reinforced for bending in one direction seldom achieves overall economy. The cost of reinforcing steel is a major item in the total cost. With the larger cover required for sanitary structures and even with single curtains of reinforcing steel in both directions, wall thicknesses less than 8 inches are likely to make concrete placing difficult and consolidation without honeycomb uncertain. Suggested designs here show 8 inches thicknesses for minor walls with heights, h_{w}, up to 7^{\prime}. As walls become higher or more heavily loaded, greater thicknesses become economical, achieving reduction in weight of flexural steel directly proportional to increases in effective

[^5]From table 14-1 CRSI, Class of soil, see the ka calc's bellow:

For this project, south Florida sandy soils, Soil class B
$\phi_{1}:=30 \mathrm{deg} \quad \mathrm{k}_{\mathrm{a} 1}:=\tan \left(45 \operatorname{deg}-\frac{\phi_{1}}{2}\right)^{2}=0.33$

Class of Soll	$\begin{gathered} \boldsymbol{\gamma} \\ \text { Max } \\ w t \\ \text { psf } \end{gathered}$	ϕ Intemal Friction	μ Friction for Sllding	Horizontal Preszura		Sloping Rockfill *			
						Active Horiz Comp.	Active Vert. Comp.	Slope	
				Active pat	Passive pat				
								Angle A	Cotan
A	105	$\geq 33^{\circ}-45^{\prime}$	0.55	30h	368h	60h	30h	$33^{\circ}-41^{\prime}$	$11 / 2: 1$
B	135	$\geq 30^{\circ}$	0.55	45h	405h)	70h	40h	29 ${ }^{\circ}-45^{\prime}$	$17 / \mathrm{c} 1$
C	132	$\geq 20^{\circ}-55^{\circ}$	0.45	62.5h	2796	90h	45h	180-26'	3:1

Table 14-1 Soil Properties Used for Design
Class A includes clean sand, gravel, broken stone, free of fines that might obstruct free drainage.
Class B includes granular soils, mixed grain sizes, dense enough to cause low permeability.
Class C includes fine, silty sands; granular solls with some clay; some glacial tills. Note that the basic horizontal pressure is liquid pressure. Class C backfill designs will also suffice for some combinations of Class A or Class B soils, with partial height water table, thus extending applicability of these designs.

$$
\begin{equation*}
\Delta_{p}=k \gamma_{t} h_{e q} \tag{3.11.6.4-1}
\end{equation*}
$$

where:
$\Delta_{p}=$ constant horizontal earth pressure due to live load surcharge (ksf)
$\gamma_{s}=$ total unit weight of soil (kef)
$k=$ coefficient of lateral earth pressure
$\rightarrow h_{\text {eq }}=$ equivalent height of soil for vehicular load (ft)

Equivalent heights of soil, $h_{\text {eq }}$, for highway loadings on abutments and retaining walls may be taken from Tables 3.11.6.4-1 and 3.11.6.4-2 Linear interpolation shall be used for intermediate wall heights.

The wall height shall be taken as the distance between the surface of the backfill and the bottom of the footing along the pressure surface being considered.

Abutments

Table 3.11.6.4-1-Equivalent Height of Soil for Vehicular Loading on Abutments Perpendicular to Traffic

Abutment Height (ft)	$h_{e q}(\mathrm{ft})$
5.0	4.0
10.0	3.0
≥ 20.0	2.0

ReTaining Walls

Table 3.11.6.4-2-Equivalent Height of Soil for Vehicular Loading on Retaining Walls Parallel to Traffic

Retaining Wall Height (ft)	$h_{\text {eq }}(\mathrm{ft})$ Distance from wall backface to edge of traffic	
	0.0 ft	1.0 ft or Further
	5.0	2.0
10.0	3.5	2.0
≥ 20.0	2.0	2.0

The load factor for both vertical and horizontal components of live load surcharge shall be taken as specified in Table 3.4.1-1 for live load surcharge.

3.11.6.5-Reduction of Surcharge

If the vehicular loading is transmitted through a structural slab, which is also supported by means other than earth, a corresponding reduction in the surcharge loads may be permitted.

- Poisson's ratio for the pavement and subgrade materials are 0.2 and 0.4 , respectively
- Wheel loads were modeled as a finite number of point loads distributed across the tire area to produce an equivalent tire contact stress
- The process for equating wall moments resulting from the elastic solution with the equivalent surcharge method used a wall height increment of 0.25 ft .
The value of the coefficient of lateral earth pressure k is taken as k_{o}, specified in Article 3.11.5.2, for walls that do not deflect or move, or k_{a}, specified in Articles 3.11.5.3, 3.11.5.6 and 3.11.5.7, for walls that deflect or move sufficiently to reach minimum active conditions.

The analyses used to develop Tables 3.11.6.4-1 and 3.11.6.4-2 are presented in Kim and Barker (1998).

The values for $h_{\text {eq }}$ given in Tables 3.11.6.4-1 and 3.11.6.4-2 are generally greater than the traditional 2.0 ft of earth load historically used in the AASHTO specifications, but less than those prescribed in previous editions (ie., before 1998) of this specification. The traditional value corresponds to a 20.0 -kip single unit truck formerly known as an H10 truck, Peck et al. (1974). This partially explains the increase in $h_{\text {eq }}$ in previous editions of this specification. Subsequent analyses, i.e., Kim and Barker (1998) show the importance of the direction of traffic, ie., parallel for a wall and perpendicular for an abutment on the magnitude of $h_{\text {eq }}$. The magnitude of $h_{\text {eg }}$ is greater for an abutment than for a wall due to the proximity and closer spacing of wheel loads to the back of an abutment compared to a wall.

The backface of the wall should be taken as the pressure surface being considered. Refer to Article C11.5.5 for application of surcharge pressures on retaining walls.

This Article relates primarily to approach slabs which are supported at one edge by the backwall of an abutment, thus transmitting load directly thereto.

TRUCKS:

LIVE LOAD SURCHARGE, LS (3.11.6.1):
 LS $=$ LINE LOAD Surcharge

- If vehicular load is expected on the surface of the backfill within a distance equal to one half the wall height behind the back face of wall, a live load surcharge must be
- HWaLL/2 $=$ DisTance Live Lo sD

$$
\begin{aligned}
& \text { using Equation 3.11.6.4-1 as: } \\
& \boldsymbol{k}=\text { Coefficient of lateral earth pressure } \\
& \boldsymbol{\gamma}_{s}=\text { Unit weight of soil (kef) } \\
& \boldsymbol{h}_{\boldsymbol{e q}}=\text { Equivalent height of soil for vehicular load }(f t)
\end{aligned}
$$

Table 3.11.6.4-1: Equivalent Height of Soil for Vehicular Loading on Abutments perpendicular to Traffic PER PENDICULAR

Abutment height $(f t)$	$\boldsymbol{h}_{\text {eq }}(f t)$
5.0	4.0
10.0	3.0
≥ 20.0	5.02 .00

Street live load truck surcharge for wall parallel to highway load, for collins avenue basement walls.
By inpection,loading along Collins Ave. will control check since the other three side streets have local traffic accessing building notrh and south of the site.

As per AASHTO formula 3.11.6.4-1, and Table 3.11.6.4-2, the highway live surcahrge load is

3-130

$$
\begin{equation*}
A_{p}=k \gamma_{t} h_{m} \tag{3.11.6.4-1}
\end{equation*}
$$

where:
$\Delta_{p}=$ constant horizontal earth pressure due to live load surcharge (ksf)
$\gamma_{\pi}=$ total unit weight of soil (kef)
$k=$ coefficient of lateral earth pressure
$h_{\text {eg }}=$ equivalent height of soil for vehicular load (ft)
Equivalent heights of soil, $h_{\text {eqj }}$, for highway loadings on abutments and retaining walls may be taken from Tables 3.11.6.4-1 and 3.11.6.4-2. Linear interpolation shall be used for intermediate wall heights.

The wall height shall be taken as the distance between the surfuce of the backfill and the bottom of the footing along the pressure surface being considered.
Table 3.11.6.4-2-Equivalent Height of Soll for Vehicular Loading on Retaining Walls Parallel to Traffic

Retaining Wall Height (ft)	$h_{\text {eq }}(\mathrm{f})$ Distance from wall backface to edge of traffic	
	0.0 f	1.0 ft or Further
	5.0	2.0
10.0	3.5	2.0
≥ 20.0	2.0	2.0

Soil class C, conservative, see previous pages

$$
\begin{array}{ll}
\gamma_{\text {SoilMax }}:=135 \mathrm{pcf} \\
\phi:=30 \mathrm{deg} & \mathrm{k}_{\mathrm{a}}:=\tan \left(45 \mathrm{deg}-\frac{\phi}{2}\right)^{2}=0.33 \\
& \mathrm{k}_{\mathrm{a}}=0.33
\end{array}
$$

as per table to the left, it is conservative to say that the truck wheels will fall adjacent to the sidewalk gutter which is approximately 6 ft away from the wall's back side.
$h_{\text {eq }}:=2$

$$
\Delta_{\mathrm{p}}:=\mathrm{k}_{\mathrm{a}} \cdot \gamma_{\text {SoilMax }} \cdot \mathrm{h}_{\mathrm{eq}} \cdot(1 \mathrm{ft})=90 \mathrm{psf} \quad \Delta_{\mathrm{p}}=0.09 \mathrm{ksf} \text { per linear foot }
$$

 Engineers

LATERAL BRACESßIELD GEOMETRY:

DESIGN CRITERIA:

1. BASEMENT SHEET PILLING WALL WILL TO CARRY LOADS WHEN TEMPORARY BRACING RESTORES ORIGINAL WALL TOP LATERAL SUPPORT CONDITION. ANY LOOSE CONCRETE COVER SHALL BE REMOVED AND BRACING TOP PLATE SHALL BE ATTACHED DIRECTLY TO SHEET PILLING
2. BASED ON EXISTING STRUCTURAL DRAWINGS BASEMENT WALL CONSTRUCTION, OUR SITE VISITS AND OUR ENGINEERING JUDGEMENT, EXISTING BASEMENT WALL WILL BE ADEQUATE FOR TRANSFERRING THE TOP OF WALL LOADS TO BRACES, SINCE THE BRACES ARE SPACED AT SUCH CLOSED DISTANCE THAT WILL RESEMBLE THE CONTINUOUS SUPPORT PROVIDED BY THE DEMOLISHED FIRST ELEVATED CONCRETE SLAB.
3. EXISTING FIRST ELEVATED CONCRETE SLAB'S REMAINING STEEL REINFORCEMENT HANGING AT TOP OF EXISTING BASEMENT WALL SHALL BE AVOIDED AND/OR REMOVED TO GIVE WAY TO BRACING SYSTEM TOP ATTACHMENTS.
4. ROAD BARRIERS WILL BE INSTALLED (MOT), BY OTHERS, AT A DISTANCE SHOWN ON OUR PLANS FOR REFERENCE, THAT WILL PREVENT ROADWAY USERS FROM FALLING INTO OPEN BASEMENT AND TO COMPLY WITH SAFETY PLAN PROVIDED BY OTHERS.
5. WE WILL USE A LIVE LOAD VEHICULAR TRAFFIC SURFACE HORIZONTAL SURCHARGED LOAD, AGAINST EXISTING BACK OF BASEMENT WALL, BASED ON ASHTO 3.11.6.1, FORMULA 3.11.6.4-1 AND TABLE 3.11.6.4-2.
6. BRACING AND RE-SHORING WILL BE DESIGNED FOR ALL APPLICABLE CODE LOADS FOR THE PRESENT CONDITION OF THE REMAINING STRUCTURE ABOVE MENTIONED. DUE TO THE LENGTH OF TIME THAT THIS EQUIPMENT WILL BE INSTALLED IN THIS SITE, WE WILL USE CODE LOADS FOR PERMANENT STRUCTURES.
7. EXISTING CONCRETE STRUCTURAL BASEMENT SLAB WILL BE USED TO SUPPORT TEMPORARY BRACING SYSTEM HORIZONTAL AND VERTICAL REACTION. DILAPIDATED AND/OR SPALLED SURFACES SHALL BE AVOIDED.
8. AS PER EXISTING STRUCTURAL PLANS, EXISTING CONCRETE STRUCTURAL SLAB IS $9^{\prime \prime}$ THICK. THIS VALUE IS CONSISTANT WITH THE AVERAGE VALUE MEASURED ON THE FIELD. BASED ON OUR VISUAL FIELD OBSERVATIONS, THIS STRUCTURAL SLAB APPEARS TO BE IN GOOD CONDITION AND SUPPORTED DEBRIS FROM ENTIRE BUILDING AFTER COLLAPSING.
9. NO STAGNANT WATER AT EXISTING CONCRETE STRUCTURAL BASEMENT SLAB, WATER REMOVAL BY OTHERS.
10. MAXIMUM BRACING SPACING WILL BE CALCULATED AND SHOWN ON PLANS.
11. EXISTING ROADWAY DRAINAGE PRE-FABRICATED PRE-ENGINEERED CATCH BASIN BOX WILL BE BYPASSED.

Existing wall height (average V.I.F.): $\quad \mathrm{H}:=10.5 \mathrm{ft}$
For loading diagrams see previous pages for basement wall.

Basement Wall Braces loading along Collins Ave. by inspection, controls brace check:

Wind load:
Wind $:=48.36 \mathrm{psf} \quad \mathrm{w}_{\text {wind }}:=$ Wind $1 \mathrm{ft}=0.048 \cdot \mathrm{klf} \quad$ per foot of wall
Soil load:
$\gamma_{\text {soil }}:=135 \mathrm{pcf} \quad \gamma_{\mathrm{H} 2 \mathrm{O}}:=62.4 \mathrm{pcf}$
$\mathrm{k}_{\mathrm{a}}:=0.33$
$\mathrm{w}_{\text {soil }}:=\mathrm{k}_{\mathrm{a}} \cdot\left(\gamma_{\text {soil }}+\gamma_{\mathrm{H} 2 \mathrm{O}}\right) \cdot \mathrm{H} \cdot 1 \mathrm{ft}=0.684 \cdot \mathrm{klf} \quad$ per foot of wall. Triangular load distribution, value at base

AASTHO live load vehicular loading paralle to wall, which is our typical condition:

$$
\Delta_{\mathrm{p}}:=90 \mathrm{psf} \quad \Delta_{\mathrm{p}} \cdot 1 \mathrm{ft}=0.09 \mathrm{klf} \quad \text { See previous pages }
$$

From ENERCALC print out, top total line load on braces is:

$$
\mathrm{B}_{\mathrm{H}}:=1.221 \mathrm{klf} \quad \text { see page } 15 .
$$

Applied Loads		Service loads entered. Load Factors will be applied for calculations.	
Load for Span Number 1			
Uniform Load: $\mathrm{W}=0.0480 \mathrm{kft}$, Tributary Width $=1.0 \mathrm{ft}$, (wind)			
Varying Uniform Load: $\mathrm{D}(\mathrm{S}, \mathrm{E})=0.6840->0.050 \mathrm{k} / \mathrm{ft}$, Extent $=0.0 ~-\ggg 9.660 \mathrm{ft}$, Trib Width $=1.0 \mathrm{ft}$, (Soil)			
Uniform Load: L = $0.090 \mathrm{k} / \mathrm{tt}$, Tribut	ft, (LL Vehicula)		
Load for Span Number 2			
Uniform Load: $\mathrm{W}=0.0480 \mathrm{kftt}$, Tributary Width $=1.0 \mathrm{ft}$, (wind)			
Uniform Load: L $=0.090 \mathrm{k} / \mathrm{tt}$, Tributary Width $=1.0 \mathrm{ft}$, (LL Vehicular)			
Varying Uniform Load: $\mathrm{D}(\mathrm{S}, \mathrm{E})=0.050 \rightarrow 0.0 \mathrm{kftt}$, Extent $=0.0 \rightarrow \gg 0.830 \mathrm{ft}$, Trib Width $=1.0 \mathrm{ft}$, (LL vehicular)			
DESIGN SUMMARY			
Maximum Bending =	5.559 k -ft	Maximum Shear $=$	3.289 k
Load Combination	+D+L+H	Load Combination	+D+L+H
Location of maximum on span	0.000 ft	Location of maximum on span	0.000 ft
Span \# where maximum occurs	Span \# 1	Span \# where maximum occurs	Span\# 1
Maximum Deflection			
Max Downward Transient Deflection	0.000 in	0	
Max Upward Transient Deflection	0.000 in	0	
Max Downward Total Deflection	0.001 in	99078	
Max Upward Total Deflection	-0.000 in	55206	

Maximum Forces \& Stresses for Load Combinations

Load Combination		Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma - Max	Mnx	Mnx/Omega Cb	Rm	Va Max	Vnx	Vnx/Omega
Overall MAXimum Envelope												
Dsgn. L $=9.66 \mathrm{ft}$	1			2.65	-5.56	5.56				3.29		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.04	0.04				0.10		
$+\mathrm{D}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.08	-4.52	4.52				2.75		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.01	0.01				0.02		
+ $\mathrm{D}+\mathrm{L}+\mathrm{H}$												
Dsgn. L $=9.66 \mathrm{ft}$	1			2.65	-5.56	5.56				3.29		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.04	0.04				0.10		
$+\mathrm{D}+\mathrm{Lr}+\mathrm{H}$												
Dsgn. L $=9.66 \mathrm{ft}$	1			2.08	-4.52	4.52				2.75		
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.01	0.01				0.02		
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.08	-4.52	4.52				2.75		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.01	0.01				0.02		
$+\mathrm{D}+0.750 \mathrm{Lr}+0.750 \mathrm{~L}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.50	-5.30	5.30				3.15		
Dsgn $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.03	003				0.08		
+D+0.750L+0.750S+H												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.50	-5.30	5.30				3.15		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.03	0.03				0.08		
$+\mathrm{D}+0.60 \mathrm{~W}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.26	-4.86	4.86				2.92		
Dsgn. L $=0.83 \mathrm{ft}$	2				-0.02	0.02				0.04		
$+\mathrm{D}+0.70 \mathrm{E}+\mathrm{H}$												
										2.75	Page	4 of 35

General Beam Analysis Lic. \# : KW-06011462
Description: Controlling case - Brace top plate Reaction - Along Colins ave.

Load Combination Segment Length	Span\#	Max Stress Ratios		Summary of Moment Values						Summary of Shear Values		
		M	V	Mmax +	Mmax-	Ma-Max	Mnx	Mnx/Omega Cb	Rm	Va Max	Vnx	Vnx/Omega
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.01	0.01				0.02		
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~L}+0.450 \mathrm{~W}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.64	-5.55	5.55				3.28		
Dsgn $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.04	0.04				0.09		
+D+0.750L+0.750S+0.450W+H												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.64	-5.55	5.55				3.28		
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.04	0.04				0.09		
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			2.50	-5.30	5.30				3.15		
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.03	0.03				0.08		
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			1.43	-3.05	3.05				1.82		
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.01	0.01				0.04		
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$												
Dsgn. $\mathrm{L}=9.66 \mathrm{ft}$	1			1.25	-2.71	2.71				1.65		
Dsgn. $\mathrm{L}=0.83 \mathrm{ft}$	2				-0.00	0.00				0.01		

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl	Location in Span	Load Combination	Max. "+" Defl	Location in Span
+ $+\mathrm{L}+\mathrm{H}$	2	$\begin{aligned} & 0.0012 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 5.424 \\ & 5.424 \end{aligned}$	+ $\mathrm{D}+\mathrm{L}+\mathrm{H}$	$\begin{array}{r} 0.0000 \\ -0.0004 \end{array}$	$\begin{aligned} & 0.000 \\ & 0.830 \end{aligned}$
Vertical Reactions			Support notation : Far left is \#1		Values in KIPS	
Load Combination	Support 1	Support 2	Support 3			
Overall MAXimum	3.289	1.221				
Overall MiNimum	0.287	0.216				
+D+H	2.751	0.815				
$+\mathrm{D}+\mathrm{L}+\mathrm{H}$	3.289	1.221				
+D+Lr+H	2.751	0.815				
$+\mathrm{D}+\mathrm{S}+\mathrm{H}$	2.751	0.815				
+D+0.750Lr+0.750L+H	3.155	1.119				
+D+0.750L+0.750S+H	3.155	1.119				
+D+0.60W+H	2.923	0.945				
+D+0.70E+H	2.751	0.815				
+D+0.750Lr+0.750L+0.450W + H	3.284	1.217				
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.450 \mathrm{~W}+\mathrm{H}$	3.284	1.217				
$+\mathrm{D}+0.750 \mathrm{~L}+0.750 \mathrm{~S}+0.5250 \mathrm{E}+\mathrm{H}$	3.155	1.119				
$+0.60 \mathrm{D}+0.60 \mathrm{~W}+0.60 \mathrm{H}$	1.823	0.619				
$+0.60 \mathrm{D}+0.70 \mathrm{E}+0.60 \mathrm{H}$	1.650	0.489				
D Only	2.751	0.815				
Lr Only						
L Only	0.539	0.406				
S Only						
W Only	0.287	0.216				
E Only						
H Only						

MEADOW BURKE WALL BRACES - BASEMENT

Brace length and safe working loads, using steel braces, see attached capacity table and spec's:

$$
\begin{aligned}
& \text { Top brace information } \quad \mathrm{D}_{\text {toppanelelevation }}:=10.5 \mathrm{ft} \\
& \mathrm{~W}_{\text {walltielocation }}:=\mathrm{D}_{\text {toppanelelevation }}-10 \mathrm{in}=9.667 \mathrm{ft} \\
& \theta:=47 \mathrm{deg} \quad \mathrm{~h}:=\frac{\mathrm{W}_{\text {walltielocation }}}{\sin (\theta)}=13.22 \mathrm{ft} \quad \text { maximum }
\end{aligned}
$$

Allowable Safe Axial (tension/compression) Working Load, MB 8-14
See attached brace capacity table,

$$
A_{\text {brace }}:=\frac{518.4}{13.22} \cdot 1.74 \cdot k \cdot \frac{1}{1.50}=3.869 \cdot \mathrm{k}
$$

Horizontal force on this top of wall

$$
\mathrm{F}_{\mathrm{H}}:=1221 \mathrm{plf}
$$

$\mathrm{F}_{\mathrm{axial}}:=\frac{\mathrm{F}_{\mathrm{H}}}{\cos (\theta)}=1790.327 \frac{\mathrm{lb}}{\mathrm{ft}} \quad$ total wind horizontal force on all braces

Check brace:

$$
\begin{aligned}
& \text { we are using } \quad \mathrm{n}_{\text {bracesquantity }}:=1 \\
& \mathrm{~F}_{\text {braceAxialL }}^{\prime}:=\frac{\mathrm{F}_{\text {axial }}}{\mathrm{n}_{\text {bracesquantity }}}=1790.327 \frac{\mathrm{lb}}{\mathrm{ft}} \\
& \text { BraceSpacing }:=2 \mathrm{ft} \\
& \mathrm{~F}_{\text {braceAxial }}^{\prime}:=\mathrm{F}_{\text {braceAxialL }}^{\prime} \cdot \text { BraceSpacing }=3.581 \cdot \mathrm{k} \quad \text { per brace } \\
& \text { Check }\left(\mathrm{A}_{\text {brace }}, \mathrm{F}_{\text {braceAxial }}\right)=\text { "OK" }
\end{aligned}
$$

PERI WALL BRACES-BASEMENT

Brace length and safe working loads, using steel braces, see attached capacity table and spec's:

$$
\begin{aligned}
& \text { Top brace information } \quad D_{\text {toppanelelevation }}:=10.5 \mathrm{ft} \\
& \mathrm{~W}_{\text {walltielocation }}:=\mathrm{D}_{\text {toppanelelevation }}-10 \mathrm{in}=9.667 \mathrm{ft} \quad \mathrm{~h}_{\text {wall }}:=10.5 \mathrm{ft} \text { wall actual height } \\
& \theta:=60 \mathrm{deg} \quad \mathrm{~h}:=\frac{\mathrm{W}_{\text {walltielocation }}}{\sin (\theta)}=11.16 \mathrm{ft} \quad \text { maximum } \quad 11.16 \mathrm{ft}=3.4 \cdot \mathrm{~m}
\end{aligned}
$$

Allowable Safe Axial (tension/compression) Working Load, RSS II
See attached brace capacity table,

$$
19 \mathrm{kN}=4.271 \times 10^{3} \mathrm{lbf} \quad \mathrm{~A}_{\text {brace }}:=4271 \mathrm{lb}
$$

Horizontal force on this top of wall

$$
\mathrm{F}_{\mathrm{H}}:=1221 \mathrm{plf}
$$

$\mathrm{F}_{\mathrm{axial}}:=\frac{\mathrm{F}_{\mathrm{H}}}{\cos (\theta)}=2442 \frac{\mathrm{lb}}{\mathrm{ft}} \quad$ total wind horizontal force on all braces

Check brace:

$$
\begin{aligned}
& \text { we are using } \quad n_{\text {bracesquantity }}:=1 \\
& \mathrm{~F}_{\text {braceAxialL }}^{\prime}:=\frac{\mathrm{F}_{\text {axial }}}{\mathrm{n}_{\text {bracesquantity }}}=2442 \frac{\mathrm{lb}}{\mathrm{ft}} \\
& \mathrm{~F}_{\text {braceAxial }}^{\prime}:=\mathrm{F}_{\text {braceAxialL }}^{\prime} \cdot \text { BraceSpacing }=4.884 \cdot \mathrm{k} \quad \text { BraceSpacing }:=2 \mathrm{ft} \\
& \text { Check }\left(\mathrm{A}_{\text {brace }}, \mathrm{F}_{\text {braceAxial }}^{\prime}\right)=\text { "OK as per ASCE 7, 1/3 Increased capacity for Load Combo Used" }
\end{aligned}
$$

PERI WALL BRACES-BASEMENT

Brace length and safe working loads, using steel braces, see attached capacity table and spec's:

Allowable Safe Axial (tension/compression) Working Load, SLS 320/420
See attached brace capacity table,

$$
57.65 \mathrm{kN}=12960.236 \mathrm{lbf} \quad \quad \mathrm{~A}_{\text {brace }}:=12960.236 \mathrm{lb}
$$

Horizontal force on this top of wall

$$
\mathrm{F}_{\mathrm{H}}:=1221 \mathrm{plf}
$$

$\mathrm{F}_{\mathrm{axial}}:=\frac{\mathrm{F}_{\mathrm{H}}}{\cos (\theta)}=1726.755 \frac{\mathrm{lb}}{\mathrm{ft}} \quad$ total wind horizontal force on all braces

Check brace: we are using $\quad n_{\text {bracesquantity }}:=1$

$$
\mathrm{F}_{\text {braceAxialL }}^{\prime}:=\frac{\mathrm{F}_{\text {axial }}}{\mathrm{n}_{\text {bracesquantity }}}=1726.755 \frac{\mathrm{lb}}{\mathrm{ft}}
$$

$$
\text { BraceSpacing := } 5 \mathrm{ft}
$$

$\mathrm{F}_{\text {braceAxial }}^{\prime}:=\mathrm{F}_{\text {braceAxialL }}{ }^{\prime}$ BraceSpacing $=8.634 \cdot \mathrm{k}$
per brace

$$
\text { Check }\left(\mathrm{A}_{\text {brace }}, \mathrm{F}_{\text {braceAxial }}\right)=\text { "OK" }
$$

CONTROLLING ANCHOR BOLTS LOADING:

After carefull review of braces end forces reactions (load on anchors) this particular brace assembly reactions controls anchor bolts check. The loads are shown below.
$\left(\mathrm{F}_{\text {axial }}\right) \cdot \sin (\theta) \cdot$ BraceSpacing $=6.105 \cdot \mathrm{k} \quad$ Vertical load per brace.
$\left(\mathrm{F}_{\text {axial }}\right) \cdot \cos (\theta) \cdot$ BraceSpacing $=6.105 \cdot \mathrm{k} \quad$ Horizontal load per brace.

$$
\begin{aligned}
& \text { Top brace information } \quad D_{\text {toppanelelevation }}:=10.5 \mathrm{ft} \\
& \mathrm{~W}_{\text {walltielocation }}:=\mathrm{D}_{\text {toppanelelevation }}-10 \mathrm{in}=9.667 \mathrm{ft} \quad \mathrm{~h}_{\text {wall }}:=10.5 \mathrm{ft} \text { wall actual height } \\
& \theta:=45 \mathrm{deg} \quad \mathrm{~h}:=\frac{\mathrm{W}_{\text {walltielocation }}}{\sin (\theta)}=13.67 \mathrm{ft} \quad \text { maximum } \quad \mathrm{h}=4.167 \cdot \mathrm{~m}
\end{aligned}
$$

PERI WALL BRACES-BASEMENT

Brace length and safe working loads, using steel braces, see attached capacity table and spec's:

$$
\begin{aligned}
& \text { Top brace information } \quad D_{\text {toppanelelevation }}:=10.5 \mathrm{ft} \\
& \mathrm{~W}_{\text {walltielocation }}:=\mathrm{D}_{\text {toppanelelevation }}-10 \mathrm{in}=9.667 \mathrm{ft} \quad \mathrm{~h}_{\text {wall }}:=10.5 \mathrm{ft} \text { wall actual height } \\
& \theta:=45 \mathrm{deg} \quad \mathrm{~h}:=\frac{\mathrm{W}_{\text {walltielocation }}}{\sin (\theta)}=13.67 \mathrm{ft} \quad \text { maximum } \quad \mathrm{h}=4.167 \cdot \mathrm{~m}
\end{aligned}
$$

Allowable Safe Axial (tension/compression) Working Load, SLS 380/480
See attached brace capacity table,

$$
67.6 \mathrm{kN}=15197.085 \mathrm{lbf} \quad \mathrm{~A}_{\text {brace }}:=15197 \mathrm{lb}
$$

Horizontal force on this top of wall

$$
\mathrm{F}_{\mathrm{H}}:=1221 \mathrm{plf}
$$

$\mathrm{F}_{\mathrm{axial}}:=\frac{\mathrm{F}_{\mathrm{H}}}{\cos (\theta)}=1726.755 \frac{\mathrm{lb}}{\mathrm{ft}} \quad$ total wind horizontal force on all braces

Check brace: we are using $\quad n_{\text {bracesquantity }}:=1$

$$
\mathrm{F}_{\text {braceAxialL }}:=\frac{\mathrm{F}_{\text {axial }}}{\mathrm{n}_{\text {bracesquantity }}}=1726.755 \frac{\mathrm{lb}}{\mathrm{ft}}
$$

BraceSpacing := 5 ft
$\mathrm{F}_{\text {braceAxial }}^{\prime}:=\mathrm{F}_{\text {braceAxialL }}{ }^{\prime}$ BraceSpacing $=8.634 \cdot \mathrm{k}$
per brace

$$
\text { Check }\left(\mathrm{A}_{\text {brace }}, \mathrm{F}_{\text {braceAxial }}^{\prime}\right)=\text { "OK" }
$$

CONTROLLING ANCHOR BOLTS LOADING:

After carefull review of braces end forces reactions (load on anchors) this particular brace assembly reactions controls anchor bolts check. The loads are shown below.
$\left(\mathrm{F}_{\text {axial }}\right) \cdot \sin (\theta) \cdot$ BraceSpacing $=6.105 \cdot \mathrm{k} \quad$ Vertical load per brace.
$\left(\mathrm{F}_{\text {axial }}\right) \cdot \cos (\theta) \cdot$ BraceSpacing $=6.105 \cdot \mathrm{k} \quad$ Horizontal load per brace.

3/4" Dia. HILTI HY200 Adhesive Anchor with HAS Rod, with $63 / 4^{\prime \prime}$
Embedment, into $3,000 \mathrm{psi}$ (min.) concrete
Loading: \quad Quantity of bolts to be used $\quad n_{\text {bolt }}:=1$

See previous page for controlling brace reactions.

$\mathrm{T}_{\text {actual }}:=6.105 \mathrm{k}$	Upward on bolt	Spacing $:=6$ in \quad minimum
$\mathrm{V}_{\text {perp }}:=0 \mathrm{lb}$	Shear on bolt Perpendicular to Member	

$\mathrm{V}_{\text {parallel }}:=6.105 \mathrm{k}$ Shear on bolt. Parallel to Member. for load calc's see previous page

Connector Capacity:
See attached manufacturer tables.

$$
\text { EdgeDistance }:=10 \mathrm{in}
$$

$\mathrm{E}:=6$ in $+\frac{0}{8}$ in $\quad \mathrm{E}=6 \cdot \mathrm{in}$

$$
\begin{array}{ll}
\mathrm{ED}:=1.5 \mathrm{E} & \mathrm{ED}=9 \cdot \mathrm{in} \\
\mathrm{SD}:=1.0 \cdot \mathrm{E} & \mathrm{SD}=6 \cdot \mathrm{in}
\end{array}
$$

Reduction Factors due to edge distance and spacing:
Spacing (Tension \& Shear): $\quad \mathrm{R}_{\mathrm{S}}:=\operatorname{if}\left(\frac{\text { Spacing }}{\mathrm{SD}}<1.0, \frac{\text { Spacing }}{\mathrm{SD}}, 1.0\right)=1$
Edge distance (Tension): $\quad \mathrm{R}_{\mathrm{et}}:=$ if $\left(\frac{\text { EdgeDistance }}{\mathrm{ED}}<1.0, \frac{\text { EdgeDistance }}{\mathrm{ED}}, 1.0\right)=1$
Edge distance (Shear):

$$
\mathrm{R}_{\mathrm{ev}}:=\text { if }\left(\frac{\text { EdgeDistance }}{E D}<1.0, \frac{\text { EdgeDistance }}{E D}, 1.0\right)=1
$$

Field condition:
At one area of the basement wall, one portion of the top of the wall concrete was pryed-out exposing steel sheet pilling. at this location weld braces top plate to existing sheet pling. See below for weld check.

$$
\mathrm{P}_{\text {weldAllow }}:=3.71 \frac{\mathrm{k}}{\mathrm{in}} \cdot 2 \mathrm{in} \cdot 2=14.84 \cdot \mathrm{k} \quad \mathrm{P}_{\text {weld }}:=\sqrt{\mathrm{T}_{\text {actual }}{ }^{2}+\mathrm{V}_{\text {parallel }}{ }^{2}}=8.634 \cdot \mathrm{k}
$$

$$
\text { Check }\left(\mathrm{P}_{\text {weldAllow }}, \mathrm{P}_{\text {weld }}\right)=\text { "OK" }
$$

HY200 Adhesive Anchor:

$\alpha_{A S D}:=1.2 \cdot 0.20+1.6 \cdot 0.80=1.52$ As per Hilit manual section 2.4.6 using worst case possible of $D L$ and LL loads distribution.
$\mathrm{N}_{\text {des }}:=10615 \mathrm{lb}$

$$
\mathrm{V}_{\mathrm{des}}:=22860 \mathrm{lb} \quad \text { cracked }
$$

Tension
$\mathrm{N}_{\text {desASD }}:=\frac{\mathrm{N}_{\text {des }}}{\alpha_{\text {ASD }}}=6983.553 \mathrm{lb}$

Shear

$$
\mathrm{V}_{\mathrm{des} A S D}:=\frac{\mathrm{V}_{\mathrm{des}}}{\alpha_{\mathrm{ASD}}}=15039.474 \mathrm{lb}
$$

$\mathrm{T}_{\mathrm{c}}:=\mathrm{N}_{\mathrm{des} A S D} \cdot \mathrm{R}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{et}}{ }^{\cdot \mathrm{n}_{\text {bolt }}}$

$$
\mathrm{T}_{\mathrm{c}}=6983.55 \cdot \mathrm{lb}
$$

$\mathrm{V}_{\text {c_perp }}:=\mathrm{V}_{\text {desASD }} \cdot\left(\mathrm{R}_{\mathrm{S}} \cdot \mathrm{R}_{\mathrm{ev}}\right) \cdot \mathrm{n}_{\text {bolt }}$
$\mathrm{V}_{\text {c_perp }}=15039 \mathrm{lb}$
$\mathrm{V}_{\mathrm{c} \text { _parallel }}:=\mathrm{V}_{\text {desASD }} \cdot\left(\mathrm{R}_{\mathrm{s}} \cdot \mathrm{R}_{\mathrm{ev}}\right) \cdot \mathrm{n}_{\text {bolt }}$
$\mathrm{V}_{\mathrm{c} \text { _parallel }}=15039.47 \mathrm{lb}$

Using Parabola equation aproach:

$$
\mathrm{UC}:=\left(\frac{\mathrm{T}_{\text {actual }}}{\mathrm{T}_{\mathrm{c}}}\right)^{\frac{5}{3}}+\left(\frac{\mathrm{V}_{\text {perp }}}{\mathrm{V}_{\mathrm{c} \text { _perp }}}\right)^{\frac{5}{3}}+\left(\frac{\mathrm{V}_{\text {parallel }}}{\mathrm{V}_{\mathrm{c} _ \text {parallel }}}\right)^{\frac{5}{3}} \quad \mathrm{UC}=1.02
$$

$$
\text { Check(1.0,UC) }=\text { "Close Enough }(+/-2.5 \%) \text { " }
$$

Brace Load Table

Brace Type	Brace Length [ft] Min. / Max.	Ultimate Brace Buckling Load [kips]	Ultimate Brace Shoe Load [kips]
B / C / D	$14.50 / 20.93$	$3,470 / \mathrm{L}^{2.439}$	9.60
B / C / D [w/single knee brace \& cross lace]	$14.50 / 29.59$	$6,940 / \mathrm{L}^{2.439}$	9.60
Little "G"	$14.50 / 20.21$	$26,300 / \mathrm{L} 2.963$	7.80
Standard "G"	$22.50 / 28.87$	$1,540,000 / \mathrm{L} 4.118$	7.80
STD. "G" [w/single knee brace \& cross lace]	$22.50 / 28.87$	$2,350 / \mathrm{L} 1.759$	7.80
Big "G"	$24.00 / 38.25$	$27,700,000 / \mathrm{L} 4.81$	7.80
Big "G" [w/single knee brace \& cross lace]	$24.00 / 38.25$	$8,250 / \mathrm{L} 1.944$	7.80
Big "G" [w/double knee brace \& cross lace]	$24.00 / 38.25$	$4,290 / \mathrm{L} 1.659$	7.80
MB Precast Brace - (45218HD)	$8.00 / 14.00$	$518.54 / \mathrm{L} 1.74$	9.5
MB Precast Brace - HD (45218EHD)	$8.00 / 14.00$	$48.75-3 \mathrm{~L}$	13.5
Super 17	17.00	13.00	13.00
Super 22	22.00	11.00	11.00
Super 22 + 5' Extension	27.00	8.85	11.00
Super 22 + 10' Extension	32.00	5.80	11.00
Super 32	32.00	13.50	13.50
Super 32 + 5' Extension	37.00	10.36	13.50
Super 32 + 10' Extension	42.00	8.042	13.50
Super 32 + 10' \& 5' Extensions	47.00	7.037	13.50
Super 32 + 2-10' Extension	52.00	5.778	13.50
Super 42	42.00	16.05	16.05
Super 52	52.00	16.05	

Notes:

1. "L" is the total brace length in feet.
2. The equations above for ultimate buckling loads are based on test results performed on the braces when they were placed at an angle of 60 degrees to horizontal. For brace angles between 45 and 60 degrees to horizontal, multiply the buckling load derived from the equations above by the factor " K ".

$$
K=\frac{(1390+47 \emptyset)}{4210}
$$

Where $\emptyset=$ Brace angle to horizontal in degrees.
Exception: $\mathrm{K}=1$ may be used for all "Super Braces" except for the Super $22+10$ ' Extension.
3. Do not use brace loads greater than the ultimate brace shoe loads above. Always use the smaller of the two loads.
4. To determine the concentric brace working load, divide the governing load (brace shoe or buckling load) by the desired safety factor. A 1.5 minimum safety factor is recommended for temporary wind bracing of concrete tilt-up wall panels. Braces when used for other purposes or different types of applied loads may require higher safety factors. Safety factor shall be determined by the user.

Temporary Panel Bracing - Super 17, 22, 32, 42, 52, 62

Super 62

Super 17-62 Braces are used to temporarily support concrete panels to resist wind load until a permanent connection is made. The brace is anchored to a concrete floor slab, Deadman or an MB Brace Badger. The top foot attaches via an embedded brace insert.

Brace Type	Brace Length [ft.]	Brace Buckling Load [kips]	Ultimate Brace Shoe Load [kips]	Weight
Super 62 ${ }^{1}$	62.00	16.05	17.87	950 lbs.
Super 52	52.00	16.05	17.87	680 lbs.
Super 42	42.00	17.87	17.87	550 lbs.
Super 32^{2}	32.00	13.50	13.50	275 lbs.
Super 22^{2}	22.00	11.00	11.00	136 lbs.
Super 17	17.00	13.00	13.00	105 lbs.

1: Super 62 brace requires some extension assembly on site. Installation instructions on back.
2: Super 22 and Super 32 are available with 5 ft and 10 ft extensions.
NOTE: Use of an extension listed above reduces brace buckling load.

- Variety of sizes to brace panels from 10 ft to 94 ft in height
- Braces can be used on the inside or outside of the structure
- All braces have additional length adjustment to simplify final plumbing
- Complies to ASCE 37-02 and ASCE 7-10 regarding basic wind speeds
- Engineered to be used with Meadow Burke's Badger, Slam Anchor, MB Brace Bolt and Brace Insert.

Call 877.518.7665 or visit MeadowBurke.com

MB 8-14 Brace

The MB 8-14 by Meadow Burke features increased strength, requiring fewer braces for your project. The 8^{\prime} brace extends to 14^{\prime} and works with panels up to 21^{\prime} in height. It's durable, long lasting, and an ideal flex-solution.

To learn more, call us at 877.518.7665 or visit us online at MeadowBurke.com

24	12.12	7.00	14.00				7.26
23	12.12	7.00	14.00			8.10	7.81
22	12.12	7.00	14.00			8.79	8.42
21	12.12	7.00	14.00		9.99	9.57	9.10
20	12.12	7.00	14.00	11.5	11.0	10.4	9.88
19	12.12	7.00	14.00	12.8	12.1	11.4	10.7
18	11.33	6.54	13.08	18.9	17.9	16.7	15.7
17	11.33	6.54	13.08	20.0	19.9	18.5	17.2
16	10.54	6.08	12.17	20.0	20.0	20.0	18.9
15	9.74	5.83	11.25	20.0	20.0	20.0	20.0
14	8.94	5.17	10.33	20.0	20.0	20.0	20.0
13	8.16	4.71	9.42	20.0	20.0	20.0	20.0
12	7.36	4.25	8.50	20.0	20.0	20.0	20.0
11	7.36	4.25	8.50	20.0	20.0	20.0	20.0
10	7.36	4.25	8.50	20.0	20.0	20.0	20.0
9	7.36	4.25	8.50	20.0	20.0	20.0	20.0
8	7.00	4.83	8.50	20.0	20.0	20.0	20.0
H	V	X	L	S0	S2	S4	S6
Installation Dimensions							

Ultimate load: 48.75-3L KIP
Maximum Tension: 13.5 KIP

T-14 Tilt-Up Wall Braces

The Dayton Superior T-14 Tilt-Up Wall Braces are all steel, heavy duty wall braces designed to quickly and easily align and brace tilt-up wall panels. Rough adjustment of the T-14 braces is easily accomplished by telescoping the pipes to the nearest incremental hole.

Final adjustment is then achieved by simply turning the brace. Dayton Superior wall braces are available in numerous sizes to provide a continuous range of tilt-up panel heights of fifty feet or more. Refer to the chart below for additional information.

T-14 Tilt-Up Jumbo Brace

T-14 Tilt-Up Pipe Brace Selection Chart

Type	Description	Minimum and Maximum Brace Length
B-1	On-Site Pipe Brace	$7^{\prime}-6^{\prime}$ to $8^{\prime}-10^{\prime}$
B-2	Regular Pipe Brace	$13^{\prime}-0^{\prime}$ to $20^{\prime}-6^{*}$
B-4	Heavy Duty Regular Pipe Brace	$14^{\prime}-6^{\prime}$ to $23^{\prime}-6^{\prime}$
B-5	Heavy Duty Long Pipe Brace	$22^{\prime}-6^{\prime}$ to $39^{\prime}-0^{\prime}$
B-6	Short Pipe Brace	$10^{\prime}-0^{\circ}$ to $14^{\prime}-0^{\circ}$
B-7	Short Jumbo Brace	$17^{\prime} \cdot 0^{*}$ Fixed Length
B-8	Jumbo Brace	$22^{\prime} \cdot 0^{*}$ Fixed Length
B-9	Jumbo Brace with 5-0 Extension	$27^{\prime}-0^{*}$ Fixed Length
B-10	Jumbo Brace with $10^{\circ}-0^{\circ}$ Extension	$32^{\prime}-0^{\circ}$ Fixed Length
B-11	Tru-ltt Brace	$25^{\prime}-6^{\prime}$ to $40^{\prime}-0^{\prime}$
B-12	Jumbo 5-1/2*	$32^{\prime}-0^{\circ}$ Fixed Length
B-14*	B-12 Jumbo Brace, $10^{\circ}-0^{\circ}$ Extension	$42^{\circ} \cdot 0^{\circ}$ Fixed Length
B-15*	B-12 Jumbo Brace, 20-0 0° Extension	$52^{\circ}-0^{*}$ Fixed Length
B-16	B-12 Jumbo Brace, 5'0" Extension	37'-0" Fixed Length

To Order:

Specify: (1) quantity, (2) Name, (3) model.

Example:

200, T-14 Tilt-Up Wall Braces. Model B-8.

* Note: Field assembly is required for $\mathrm{B}-14$ and $\mathrm{B}-15$ braces.

B-11 Brace Available West Coast Only

T-15 Pipe Brace Extensions

The Dayton Superior Pipe Brace Extensions are available for the $\mathrm{B}-8$ and $\mathrm{B}-12$ pipe brace models. The T-15 extension for the B-12 model extends the brace five feet or ten feet increments. Extensions for the B-8 brace are available in five feet and ten feet lengths.

To Order:

Specify: (1) quantity, (2) name, (3) model.

Example:

40, T-15 Pipe Brace Extension, 5' extension for $\mathrm{B}-8$ braces.

T-16 Pipe Knee Brace

The Dayton Superior T-16 Pipe Knee Brace is an all steel, $1-1 / 2^{\prime \prime}$ diameter knee brace available in $10^{\prime}-6^{\prime \prime}$ and $14^{\prime}-6$ " lengths. The T-16 knee brace is used in conjunction with the T-17 Swivel Coupler to add strength and stability to standard wall braces.

To Order:
Specify: (1) quantity, (2) name, (3) length.
Example:
120, T-16 Pipe Knee Braces, 10 '- 6 " long.

T-16 Pipe Knee Brace

T-17 Swivel Coupler

The Dayton Superior T-17 Swivel Coupler is designed to attach standard $1-1 / 2^{\prime \prime}$ diameter knee braces to $2^{\prime \prime}$ or 2-1/2" diameter wall braces.

To Order:
Specify: (1) quantity, (2) name,
(3) wall brace diameter.

T-17 Swivel Coupler

Example:
120, T-17 Swivel Couplers for 2" wall braces.

Brace Length and Safe Working Loads

B-1 On-Site Pipe Brace				
D	W	F		B
				Without Knee Bracing
$9^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$7^{\prime}-6^{\prime \prime}$	$6,500 \mathrm{lbs}$.
$9^{\prime}-6^{\prime \prime}$	$6^{\prime}-5^{\prime \prime}$	$4^{\prime}-9^{\prime \prime}$	$7^{\prime}-11^{\prime \prime}$	$6,500 \mathrm{lbs}$.
$10^{\prime}-0^{\prime \prime}$	$6^{\prime}-8^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$8^{\prime}-4^{\prime \prime}$	$6,500 \mathrm{lbs}$.
$10^{\prime}-6^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$8^{\prime \prime}-9^{\prime \prime}$	$6,500 \mathrm{lbs}$.

B-2 Regular Pipe Brace					
D	W	F	B	Safe Working Load	
				Without Knee Bracing	With Knee Bracing
16'-0"	10'-8"	8'-0"	13'-4*	5,800 lbs.	6,500 lbs.
17'-0"	$11^{\prime}-4^{\prime \prime}$	8'-6"	14'-2"	4,800 lbs.	6,500 lbs.
18'-0"	12'-0"	$9^{\prime}-0^{\prime \prime}$	$15^{\prime}-0^{\prime \prime}$	4,200 lbs.	6,500 lbs.
19'-0"	$12^{\prime}-8{ }^{\prime \prime}$	9'-6"	$15^{\prime}-10^{\prime \prime}$	3,550 lbs.	6,500 lbs.
20'-0'	13'-5"	10'-0"	$16^{\prime}-7^{\prime \prime}$	3,150 lbs.	6,500 lbs.
21-0"	14'-1"	10'-6"	$17^{\prime} \cdot 5^{\prime \prime}$	2,800 lbs.	6,500 lbs.
22'-0"	14'-9"	11'-0"	18'-3"	2,500 lbs.	6,500 lbs.
23'-0"	15'-5"	11-6"	19'0"	2,275 lbs.	6,500 lbs.
24'-0"	16'-1"	12'-0"	19'-11"	1,975 lbs.	5,925 lbs.

Note: Depending on panel thickness and height, a double mat of reinforcing steel may be required to resist the bending stresses of temporary wind loads.
SWL provides a minimum factor of safety of 1.5 to 1.
Danger! With knee bracing means that knee, lateral and end bracing must be installed in order to obtain SWL's shown.

Brace Length and Safe Working Loads

B-4 Heavy Duty Regular Pipe Brace					
	W	F	B	Safe Working Load	
D				Without Knee Bracing	With Knee Bracing
18'-0"	$12^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	15'-0"	6,500 lbs.	6,500 lbs.
19'-0"	$12^{\prime}-8{ }^{\prime \prime}$	9'-6"	$15^{\prime}-10^{\prime \prime}$	6,500 lbs.	6,500 lbs.
20'0"	$13^{\prime}-4^{\prime \prime}$	10'-0"	$16^{\prime}-8{ }^{\prime \prime}$	6,500 lbs.	6,500 lbs.
21'-0"	$14^{\prime}-0^{\prime \prime}$	10'-6"	$17^{\prime}-6{ }^{\prime \prime}$	5,925 lbs.	6,500 lbs.
22'-0"	$14^{\prime}-8^{\prime \prime}$	11'-0"	$18^{\prime}-4^{\prime \prime}$	4,800 lbs.	6,500 lbs.
$23^{\prime}-0^{\prime \prime}$	$15^{\prime}-4^{\prime \prime}$	11-6"	19'-2"	3,925 lbs.	6,500 lbs.
24'-0"	$16^{\prime}-0^{\prime \prime}$	$12^{\prime}-0^{\prime \prime}$	20'-0'	3,575 lbs.	6,500 lbs.
25'-0"	$16^{\prime} 8^{\prime \prime}$	$12^{\prime}-6^{\prime \prime}$	20'-10"	2,975 lbs.	6,500 lbs.
26'0"	$17^{\prime}-4^{\prime \prime}$	$13^{\prime}-0^{\prime \prime}$	21-8"	2,500 lbs.	6,500 lbs.
$27^{\prime}-0^{\prime \prime}$	$18^{\prime}-0^{\prime \prime}$	13'-6"	22'6"	2,275 lbs.	6,500 lbs.
28'0"	$18^{\prime} 8^{\prime \prime}$	14'-0"	23'-4"	$1,950 \mathrm{lbs}$.	6,500 lbs.

Note: Depending on panel thickness and height, a double mat of reinforcing steel may be required to resist the bending stresses of temporary wind loads.
SWL provides a minimum factor of safety of 1.5 to 1 .
Danger! With knee bracing means that knee, lateral and end bracing must be installed in order to obtain SWL's shown.

B-5 Heavy Duty Long Pipe Brace					
D	W	F	B	Safe Working Load	
				Without Knee Bracing	With Knee Bracing
27-0"	$18 .-0^{\prime \prime}$	13'-6"	22'-6"	5,975 lbs.	6,500 lbs.
28'-0"	$18^{\prime}-8{ }^{\prime \prime}$	14'-0"	23'-4"	5,325 lbs.	6,500 lbs.
29'-0"	$19^{\prime}-4^{\prime \prime}$	14'-6"	24'-2"	4,800 lbs.	6,500 lbs.
30'-0"	20'-0"	15'-0"	25'-0"	4,250 lbs.	6,500 lbs.
31'-0"	20'8"	$15^{\prime}-6{ }^{\prime \prime}$	25'-10"	3,450 lbs.	6,500 lbs.
$32^{\prime}-0{ }^{\prime \prime}$	21-4"	$16^{\prime}-0^{\prime \prime}$	26'-8"	2,825 lbs.	6,500 lbs.
$33^{\prime}-0{ }^{\prime \prime}$	22'-0"	$16^{\prime}-6{ }^{\prime \prime}$	27'-6"	2,550 lbs.	6,500 lbs.
34'-0"	22'8'	17'-0"	28'-4"	2,100 lbs.	6,500 lbs.
$35^{\prime}-0{ }^{\prime \prime}$	23'4"	17'-6"	29'-2"	1,750 lbs.	6,500 lbs.
36'-0"	$24^{\prime}-0^{\prime \prime}$	18'-0"	$30^{\prime}-0{ }^{\prime \prime}$	1,600 lbs.	6,500 lbs.
37'-0"	24'-8"	18'-6"	30'-10"	1,350 lbs.	6,500 lbs.
38'-0"	$25^{\prime}-4^{\prime \prime}$	19'-0"	31'-8"	Not Recommended	6,300 lbs.
39'-0"	26'-0"	19'-6"	32'-6"	Not Recommended	6,000 lbs.
$40^{\prime}-0{ }^{\prime \prime}$	26'8"	20'-0"	$33^{\prime}-4{ }^{\prime \prime}$	Not Recommended	5,600 lbs.
41'-0"	27'-4"	20'-6"	34'-2"	Not Recommended	5,200 lbs.
42'-0"	28'-0"	21'-0"	35'-0"	Not Recommended	5,000 lbs.
$43^{\prime}-0{ }^{\prime \prime}$	28'8"	21'-6"	$35^{\prime}-10{ }^{\prime \prime}$	Not Recommended	4,650 lbs.
44'-0"	29'-4"	22'-0"	36'-8"	Not Recommended	4,325 lbs.
45'-0"	30'-0"	22'-6"	37'-6"	Not Recommended	4,175 lbs.
$46^{\prime}-0{ }^{\prime \prime}$	30'-8"	23'-0"	$38^{\prime}-4{ }^{\prime \prime}$	Not Recommended	3,900 lbs.
47'-0"	$31^{\prime}-4^{\prime \prime}$	23'-6"	39'-0"	Not Recommended	3,775 lbs.

Note: Depending on panel thickness and height, a double mat of reinforcing steel may be required to resist the bending stresses of temporary wind loads.
SWL provides a minimum factor of safety of 1.5 to 1 .
Danger! With knee bracing means that knee, lateral and end bracing must be installed in order to obtain SWL's shown.

RS 1000 Push-Pull Prop
 CB 164-224 Adjusting Spindle

RS 1000 Push-Pull Prop

$\mathrm{L}=6.40$ to 10.00 m

Extension length [m]	6.40	7.00	8.00	9.00	10.00
Perm. tension or compr. force $\mathbf{N}[\mathrm{kN}]$ with symmetrical extension of the inner tubes	29.5	26.0	19.6	14.6	11.1
$\mathbf{N}^{2} \mathbf{~ (K) ~} 66325845$					

The chart is taken from the Type Inspection of the State Structural Inspectorate, Düsseldorf (Inspection Certificate P31-137/90).
It may only be used in conformity with the provisions of this type inspection.

The end connections are to take the form of pin joints shown to be structurally adequate by calculations in each individual case.

CB 164-224 Adjusting Spindle

$\mathrm{L}=1.64$ to 2.24 m

Extension length [m]	1.64	1.80	1.90	2.00	2.10	2.24
Perm. tension or compr. force $\mathbf{N}[\mathrm{kN}]$ with symmetrical extension of the inner tubes	122.0	109.0	101.0	91.0	80.0	68.0
When used as a compression brace	122.0	98.0	84.0	76.0	72.0	68.0

The chart is taken from the Type Inspection of the State Structural Inspectorate, Düsseldorf (Inspection Certificate P31-18/90).
It may only be used in conformity with the provisions of this type inspection.

The end connections are to take the form of pin joints shown to be structurally aadequate ${ }^{35}$ hw nolnsistinne in oseh individusl nomen

Table
RS and RSS Push-Pull Props
AV Kicker

RS I L $=1.80$ to 3.00 m Perm. tension/compr. force $=10 \mathrm{kN}$
RS II $\mathrm{L}=2.50$ to 4.30 m
RSS I $\mathrm{L}=2.05$ to 2.94 m
Extension/compr. for

RSS II L = 2.91 to 3.80 m

Extension length [m]	2.91	3.00	3.25	3.50	3.80
Perm. tens./compr. force [kN]	30	30	25	19	13

RSS III $\mathrm{L}=4.60$ to 6.00 m

Extension length [m]	4.60	5.00	5.30	5.65	6.00
Perm. tens./compr. force [kN]	29	24	20	16	12

AV Kicker $L=1.08$ to 1.40 m
Perm. tension/compr. force $=18 \mathrm{kN}$
AV 190 Kicker $L=1.08$ to 1.90 m

Extension length [m]	1.08	1.25	1.50	1.75	1.90
Perm. tens./compr. force [kN]	30	30	27	21	18

AV Kicker for RSS III $L=2.05$ to 2.94 m

Extension length [m]	2.05	2.25	2.50	2.75	2.94
Perm. tens./compr. force [kN]	30	30	26	19	16

Table for

PERI Push-Pull Props and Kicker Braces

Formwork height \mathbf{h} [m]	picture 1						picture 2		
	3.0	4.0	5.0	6.0	7.0	8.0		9.0	10.0
Allowable prop spacing [m]	3.53	2.73	2.19	1.82	1.58	1.42		1.32	1.15
Actual prop load at [kN] maximum prop spacing	9.70	9.70	9.80	9.80	9.80	9.60	F_{2}	$\begin{aligned} & 6.40 \\ & 6.50 \end{aligned}$	$\begin{aligned} & 7.80 \\ & 5.90 \end{aligned}$
Actual kicker load at [kN] maximum prop spacing	2.10	2.30	2.20	2.20	2.30	2.60		1.80	1.60
$\mathrm{x}=$ Top connection [m] point from top of formwork	1.00	1.20	1.50	1.80	2.00	2.00	y,	$\begin{aligned} & 1.50 \\ & 4.50 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 5.50 \end{aligned}$
$\mathbf{y}=$ Dist. of base piate [m] from front face of formwork	1.15	1.62	2.02	2.42	2.89	3.46	x,	$\begin{aligned} & 4.30 \\ & 2.60 \end{aligned}$	$\begin{aligned} & 4.73 \\ & 2.60 \end{aligned}$

[^6]picture 1

picture 2

INTERPOLATION CALCULATIONS

$\mathrm{AA}:=4.1 \quad \mathrm{BB}:=55.8$
$C C:=4.058$
$\mathrm{DD}:=4 \quad \mathrm{EE}:=60.2$

$$
\begin{aligned}
& \mathrm{FF}:=|\mathrm{AA}-\mathrm{CC}|=0.04 \\
& \mathrm{GG}:=|\mathrm{AA}-\mathrm{DD}|=0.1 \\
& \mathrm{HH}:=|\mathrm{BB}-\mathrm{EE}|=4.4 \\
& \mathrm{Y}:=\mathrm{HH} \cdot \frac{\mathrm{FF}}{\mathrm{GG}}=1.85
\end{aligned}
$$

$$
\mathrm{X}:=\mathrm{BB}+\mathrm{Y}=57.65 \quad \text { PERI 320/420 axial capacity }
$$

SLS 260/360 L = $2.60-3.60 \mathrm{~m}$

Extension Length L [m]	2.60	2.80	3.00	3.10	3.20	3.30	3.40	3.50	3.60	4.058 m	
Perm. Compressive Force [kN]	133.4	116.2	99.9	91.9	84.3	77.3	70.6	64.6	59.0		
Perm. Tension Force [kN]	105.4										
SLS 320/420 L = 3.20-4.20 m											
Extension Length L [m]	3.20	3.40	3.50	3.60	3.70	3.80	3.90	4.00	4.10	4.20	
Perm. Compressive Force [kN]	117.1	101.2	92.8	85.5	78.6	72.1	66.1	60.2	55.8	51.2	
Perm. Tension Force [kN]	105.4										
SLS 380/480 L=3.80-4.80 m											
Extension Length L [m]	3.80	3.90	4.00	4.10	4.20	4.30	4.40	4.50	4.60	4.70	4.80
Perm. Compressive Force [kN]	85.5	80.6	76.1	71.8	67.6	63.7	59.9	55.4	51.3	47.5	43.9
Perm. Tension Force [kN]	105.4										

Heavy-Duty Spindles
 SLS and SCS

Permissible load-bearing capacity with a symmetrical extension
SLS 40/80 L = 0.40-0.80 m

Extension Length $[\mathrm{m}]$	$0.40-0.80$
Perm. Compressive Force $[\mathrm{kN}]$	88.0
Perm. Tension Force $[\mathrm{kN}]$	70.8

SLS 80/140 $\mathrm{L}=0.80-1.40 \mathrm{~m}$

Extension Length $\mathrm{L}[\mathrm{m}]$	$0.80-1.40$
Perm. Compressive Force $[\mathrm{kN}]$	107.1
Perm. Tension Force $[\mathrm{kN}]$	81.6

SLS 100/180 $L=1.00-1.80 \mathrm{~m}$

Extension Length $\mathrm{L}[\mathrm{m}]$	$1.00-1.50$	1.60	1.80
Perm. Compressive Force $[\mathrm{kN}]$	107.1	105.5	90.4
Perm. Tension Force [kN]	81.6		

Additional information for SLS Spindles:

When using the SLS Spindle with
Pin Ø 21×120 (Item no. 104031) or Hex. Bolt M20×100-8.8 on the SRU Steel Waler, a maximum load of 70 kN applies.

- values according to Type Test S-N-050528!
- horizontal to vertical applications.
- dead load and wind load on the props considered.
- intermediate values are to be linearly interpolated.
- bearing stress and bolt bending of the connection are to be verified separately.

SLS 140/240 $\mathrm{L}=1.40-2.40 \mathrm{~m}$

Extension Length $\mathrm{L}[\mathrm{m}]$	1.40	1.50	1.70	1.90	2.00	2.10	2.20	2.30	2.40
Perm. Compressive Force $[\mathrm{kN}]$	138.4	134.7	122.6	109.6	102.5	95.2	87.8	80.5	73.4
Perm. Tension Force $[\mathrm{kN}]$	105.4								

SLS 200/300 L = 2.00-3.00 m

Extension Length $\mathrm{L}[\mathrm{m}]$	2.00	2.20	2.40	2.50	2.60	2.70	2.80	2.90	3.00
Perm. Compressive Force $[\mathrm{kN}]$	136.6	123.6	109.3	101.9	94.4	87.2	79.8	72.9	66.4
Perm. Tension Force $[\mathrm{kN}]$	105.4								

SLS 260/360 L = $2.60-3.60 \mathrm{~m}$

Extension Length L [m]	2.60	2.80	3.00	3.10	3.20	3.30	3.40	3.50	3.60
Perm. Compressive Force $[\mathrm{kN}]$	133.4	116.2	99.9	91.9	84.3	77.3	70.6	64.6	59.0
Perm. Tension Force [kN]	105.4								

4.058m

SLS 320/420 L = 3.20-4.20 m

Extension Length L $[\mathrm{m}]$	3.20	3.40	3.50	3.60	3.70	3.80	3.90	4.00	4.10	4.20
Perm. Compressive Force $[\mathrm{kN}]$	117.1	101.2	92.8	85.5	78.6	72.1	66.1	60.2	55.8	51.2
Perm. Tension Force $[\mathrm{kN}]$	105.4									

SLS 380/480 L = 3.80-4.80 m

Extension Length L [m]	3.80	3.90	4.00	4.10	4.20	4.30	4.40	4.50	4.60	4.70
Perm. Compressive Force [kN]	85.5	80.6	76.1	71.8	67.6	63.7	59.9	55.4	51.3	47.5
Perm. Tension Force $[\mathrm{kN}]$	105.4									

SCS 198/250 L = $1.98-2.50 \mathrm{~m}$

Extension Length L [m]	1.98	2.10	2.20	2.30	2.40	2.50
Perm. Compressive Force $[\mathrm{kN}]$	264	247	233	217	197	175
Perm. Tension Force $[\mathrm{kN}]$	211					

Additional information for SCS Spindles:

- values according to Type Test!
- horizontal to vertical applications.
- dead load and wind load on the props considered.
- intermediate values are to be linearly interpolated.
- bearing stress and bolt bending of the connection are to be verified separately.

HIT-HY 200 Adhesive Anchoring System

Table 1 - HIT-HY 200 Design Strength (Factored Resistance) with Concrete/Pullout Failure for HIT-Z(-R) Rods in Uncracked Concrete ${ }^{1,2,3,4,5,6,7,8,10}$

Anchor Diameter in. (mm)	Effective Embed. Depth in. (mm)	Tension - ΦN_{n} or $N_{\text {f }}$				Shear - ΦV_{o} or V_{r}			
		$\begin{gathered} f_{\mathrm{c}}=2500 \mathrm{psi} \\ (17.2 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \hline f_{\mathrm{c}}=3000 \mathrm{psi} \\ (20.7 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=4000 \mathrm{psi} \\ (27.6 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=6000 \mathrm{psi} \\ (41.4 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=2500 \mathrm{psi} \\ (17.2 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=3000 \mathrm{psi} \\ (20.7 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} f_{c}=4000 \mathrm{psi} \\ (27.6 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=6000 \mathrm{psi} \\ (41.4 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \\ \hline \end{gathered}$
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$2-3 / 8$	$\begin{aligned} & 2,855 \\ & \hline \end{aligned}$	$3,125$	$3,610$	$4,425$	$3,075$	$3,370$	$3,890$	$\begin{aligned} & 4,765 \\ & 0101 \end{aligned}$
	3-3/8	4,835	5,300	5,560	5,560 , 24.7	10,415 (46.3)	11,410 $(50,8)$	13,175 (58.6)	16,135 (71.8)
	(86)								
	4-1/2	5,560	5,560	5,560	5,560	16,035	17,570	20,285	24,845
	(114)	(24.7)	(24.7)	(24.7)	(24.7)	(71.3)	(78.2)	(90.2)	(110.5)
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$2-3 / 4$	$3,555$	$3,895$	$4,500$	$5,510$	$7,660$	$8,395$	$9,690$	$11,870$
	4-1/2	7,445	8,155	8,190	8,190	16,035	17,570	20,285	24,845
	(114)	(33.1)	(36.3)	(36.4)	(36.4)	(71.3)	(78.2)	(90.2)	(110.5)
	${ }_{(152}^{6}$	8,190	8,190	8,190	8,190	24,690	27,045	31,230	38,250
	(152)	(36.4)	(36.4)	(36.4)	(36.4)	(109.8)	(120.3)	(138.9)	(170.1)
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$3-3 / 4$	$5,665$	$6,205$	$7,165$	$8,775$ (39.0)	$12,200$	$13,365$	$15,430$	$18,900$
	5-5/8	10,405	11,400	13,165	14,950	22,415	24,550	28,350	34,720
	(143)	(46.3)	(50.7)	(58.6)	(66.5)	(99.7)	(109.2)	(126.1)	(154.4)
	7-1/2	14,950	14,950	14,950	14,950	34,505	37,800	43,650	53,455
	(191)	(66.5)	(66.5)	(66.5)	(66.5)	(153.5)	(168.1)	(194.2)	(237.8)
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	4	6,240	6,835	7,895	9,665	13,440	14,725	17,000	20,820
	(102)	(27.8)	(30.4)	(35.1)	(43.0)	(59.8)	(65.5)	(75.6)	(92.6)
	6-3/4	13,680	14,985	17,305	19,890	29,460	32,275	37,265	45,645
	(171)	(60.9)	(66.7)	(77.0)	(88.5)	(131.0)	(143.6)	(165.8)	(203.0)
	8-1/2	19,330	19,890	19,890	19,890	41,635	45,605	52,660	64,500
	(216)	(86.0)	(88.5)	(88.5)	(88.5)	(185.2)	(202.9)	(234.2)	(286.9)

Table 2 - HIT-HY 200 Design Strength (Factored Resistance) with Concrete/Pullout Failure for HIT-Z(-R) Rods in Cracked Concrete ${ }^{1,2,3,4,5,6,7,8,9,10}$

Anchor Diameter in. (mm)	Effective Embed. Depth in. (mm)	Tension - ΦN_{n} or N_{r}				Shear - $\Phi V_{\text {n }}$ or $V_{\text {r }}$			
		$\begin{gathered} f_{c}^{\prime}=2500 \mathrm{psi} \\ (17.2 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}^{\prime}=3000 \mathrm{psi} \\ (20.7 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=4000 \mathrm{psi} \\ (27.6 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=6000 \mathrm{psi} \\ (41.4 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}=2500 \mathrm{psi} \\ (17.2 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}=3000 \mathrm{psi} \\ (20.7 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{c}=4000 \mathrm{psi} \\ (27.6 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$	$\begin{gathered} f_{\mathrm{c}}=6000 \mathrm{psi} \\ (41.4 \mathrm{Mpa}) \\ \mathrm{lb}(\mathrm{kN}) \end{gathered}$
$\begin{gathered} 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} \hline 2-3 / 8 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 2,020 \\ (9.0) \\ \hline \end{gathered}$	$\begin{gathered} 2,215 \\ (9.9) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2,560 \\ & (11.4) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3,135 \\ & (13.9) \\ & \hline \end{aligned}$	$\begin{gathered} 2,180 \\ (9.7) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 2,385 \\ & (10.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 2,755 \\ & (12.3) \\ & \hline \end{aligned}$	$3,375$
	$\begin{gathered} 3-3 / 8 \\ (86) \\ \hline \end{gathered}$	$\begin{aligned} & 3,425 \\ & (15.2) \end{aligned}$	$\begin{aligned} & 3,755 \\ & (16.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 4,335 \\ (19.3) \\ \hline \end{array}$	$\begin{aligned} & 5,305 \\ & (23.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,380 \\ & (32.8) \\ & \hline \end{aligned}$	$\begin{array}{r} 8,085 \\ (36.0) \\ \hline \end{array}$	$\begin{aligned} & 9,335 \\ & (41.5) \end{aligned}$	$\begin{gathered} 11,430 \\ (50.8) \\ \hline \end{gathered}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,275 \\ & (23.5) \end{aligned}$	$\begin{aligned} & 5,560 \\ & (24.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,560 \\ & (24.7) \end{aligned}$	$\begin{array}{r} 5,560 \\ (24.7) \\ \hline \end{array}$	$\begin{gathered} 11,360 \\ (50.5) \\ \hline \end{gathered}$	$\begin{aligned} & 12,445 \\ & (55.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 14,370 \\ (63.9) \\ \hline \end{array}$	$\begin{array}{r} 17,600 \\ (78.3) \\ \hline \end{array}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{gathered} 2-3 / 4 \\ (70) \end{gathered}$	$\begin{aligned} & 2,520 \\ & (11.2) \end{aligned}$	$\begin{aligned} & 2,760 \\ & (12.3) \end{aligned}$	$\begin{aligned} & 3,185 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 3,905 \\ & (17.4) \end{aligned}$	$\begin{aligned} & 5,425 \\ & (24.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,945 \\ & (26.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,865 \\ & (30.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,405 \\ & (37.4) \end{aligned}$
	$\begin{aligned} & 4-1 / 2 \\ & (114) \\ & \hline \end{aligned}$	$\begin{aligned} & 5,275 \\ & (23.5) \end{aligned}$	$\begin{aligned} & 5,780 \\ & (25.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 6,670 \\ & (29.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 7,640 \\ & (34.0) \end{aligned}$	$\begin{aligned} & 11,360 \\ & (50.5) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,445 \\ & (55.4) \end{aligned}$	$\begin{aligned} & 14,370 \\ & (63.9) \\ & \hline \end{aligned}$	$\begin{gathered} 17,600 \\ (78.3) \\ \hline \end{gathered}$
	$\begin{gathered} 6 \\ (152) \\ \hline \end{gathered}$	$\begin{array}{r} 7,640 \\ (34.0) \\ \hline \end{array}$	$\begin{gathered} 17,490 \\ (77.8) \\ \hline \end{gathered}$	$\begin{aligned} & 19,160 \\ & (85.2) \\ & \hline \end{aligned}$	$\begin{gathered} 22,120 \\ (98.4) \\ \hline \end{gathered}$	$\begin{aligned} & 27,095 \\ & (120.5) \\ & \hline \end{aligned}$			
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{gathered} 3-3 / 4 \\ (95) \\ \hline \end{gathered}$	$\begin{array}{r} 4,010 \\ (17.8) \\ \hline \end{array}$	$\begin{aligned} & 4,395 \\ & (19.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 5,075 \\ (22.6) \\ \hline \end{array}$	$\begin{aligned} & 6,215 \\ & (27.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,640 \\ & (38.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,465 \\ & (42.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 10,930 \\ & (48.6) \\ & \hline \end{aligned}$	$\begin{gathered} 13,390 \\ (59.6) \\ \hline \end{gathered}$
	$\begin{aligned} & 5-5 / 8 \\ & (143) \\ & \hline \end{aligned}$	$\begin{array}{r} 7,370 \\ (32.8) \end{array}$	$\begin{aligned} & 8,075 \\ & (35.9) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,325 \\ & (41.5) \end{aligned}$	$\begin{aligned} & 11,420 \\ & (50.8) \\ & \hline \end{aligned}$	$\begin{aligned} & 15,875 \\ & (70.6) \end{aligned}$	$\begin{aligned} & 17,390 \\ & (77.4) \end{aligned}$	$\begin{array}{r} 20,080 \\ (89.3) \\ \hline \end{array}$	$\begin{aligned} & 24,595 \\ & (109.4) \\ & \hline \end{aligned}$
	$\begin{aligned} & 7-1 / 2 \\ & (191) \\ & \hline \end{aligned}$	$\begin{array}{r} 11,350 \\ (50.5) \\ \hline \end{array}$	$\begin{aligned} & 12,430 \\ & (55.3) \\ & \hline \end{aligned}$	$\begin{array}{r} 14,355 \\ (63.9) \\ \hline \end{array}$	$\begin{array}{r} 14,950 \\ (66.5) \\ \hline \end{array}$	$\begin{array}{r} 24,440 \\ (108.7) \\ \hline \end{array}$	$\begin{array}{r} 26,775 \\ (119,1) \\ \hline \end{array}$	$\begin{aligned} & 30,915 \\ & (137.5) \\ & \hline \end{aligned}$	$\begin{array}{r} 37,865 \\ (168,4) \\ \hline \end{array}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 4 \\ (102) \\ \hline \end{gathered}$	$\begin{aligned} & 4,420 \\ & (19.7) \\ & \hline \end{aligned}$	$\begin{array}{r} 4,840 \\ (21.5) \\ \hline \end{array}$	$\begin{array}{r} 5,590 \\ (24.9) \\ \hline \end{array}$	$\begin{aligned} & 6,845 \\ & (30.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,520 \\ & (42.3) \\ & \hline \end{aligned}$	$\begin{aligned} & 10,430 \\ & (46.4) \\ & \hline \end{aligned}$	$\begin{aligned} & 12,040 \\ & (53.6) \\ & \hline \end{aligned}$	$\begin{aligned} & 14,750 \\ & (65.6) \\ & \hline \end{aligned}$
	$\begin{aligned} & 6-3 / 4 \\ & (171) \\ & \hline \end{aligned}$	$\begin{aligned} & 9,690 \\ & (43.1) \\ & \hline \end{aligned}$	$\begin{gathered} 10,615 \\ (47.2) \\ \hline \end{gathered}$	$\begin{aligned} & 12,255 \\ & (54.5) \\ & \hline \end{aligned}$	$\begin{gathered} 15,010 \\ (66.8) \\ \hline \end{gathered}$	$\begin{gathered} 20,870 \\ (92.8) \\ \hline \end{gathered}$	$\begin{aligned} & 22,860 \\ & (101.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 26,395 \\ & (117.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 32,330 \\ (143.8) \\ \hline \end{array}$
	$\begin{aligned} & 8-1 / 2 \\ & (216) \\ & \hline \end{aligned}$	$\begin{aligned} & 13,690 \\ & (60.9) \\ & \hline \end{aligned}$	$\begin{gathered} 15,000 \\ (66.7) \end{gathered}$	$\begin{gathered} 17,320 \\ (77.0) \end{gathered}$	$\begin{gathered} 19,535 \\ (86.9) \\ \hline \end{gathered}$	$\begin{aligned} & 29,490 \\ & (131.2) \\ & \hline \end{aligned}$	$\begin{aligned} & 32,305 \\ & (143.7) \\ & \hline \end{aligned}$	$\begin{aligned} & 37,300 \\ & (165.9) \end{aligned}$	$\begin{aligned} & 45,685 \\ & (203.2) \\ & \hline \end{aligned}$

1 See Section 2.4 for explanation on development of load values.
2 See Section 2.4.6 to convert design strength (factored resistance) value to ASD value.
3 Linear interpolation between embedment depths and concrete compressive strengths is not permitted.
4 Apply spacing, edge distance, and concrete thickness factors in tables $8-15$ as necessary. Compare to the steel values in table 3 . The lesser of the values is to be used for the design.
5 Data is for temperature range A: Max. short term temperature $=104^{\circ} \mathrm{F}\left(40^{\circ} \mathrm{C}\right)$, max. long term temperature $=75^{\circ} \mathrm{F}\left(24^{\circ} \mathrm{C}\right)$.
For temperature range B: Max. short term temperature $=176^{\circ} \mathrm{F}\left(80^{\circ} \mathrm{C}\right)$, max. long term temperature $=122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$ multiply above value by 0.86 .
For temperature range C : Max. short term temperature $=248^{\circ} \mathrm{F}\left(120^{\circ} \mathrm{C}\right)$, max. long term temperature $=162^{\circ} \mathrm{F}\left(72^{\circ} \mathrm{C}\right)$ multiply above value by 0.70 .
Short term elevated concrete temperatures are those that occur over brief intervals, e.g., as a result of diurnal cycling. Long term concrete temperatures are roughly constant over significant periods of time.
6 Tabular values are for dry and water saturated concrete conditions.
7 Tabular values are for short term loads only. For sustained loads, see Section 2.4.8.
8 Tabular values are for normal weight concrete only. For lightweight concrete multiply design strength (factored resistance) by λ_{Ω}, as follows:
For sand-lightweight, $\lambda_{a}=0.51$. For all-lightweight, $\lambda_{a}=0.45$.
9 Tabular values are for static loads only. For seismic loads, multiply cracked concrete tabular values by the following reduction factors:
$3 / 8$-in diameter - $\alpha_{\text {sem }}=0.705$
$1 / 2$-in to $3 / 4$-in diameter $-\alpha_{\text {mem }}=0.75$
See Section 2.4.7 for additional information on seismic applications.
10 Diamond core drilling with Hilti HIT-Z(-R) rods is permitted with no reduction in published data above.

HIT-HY 200 Adhesive Anchoring System

The full shear strength can be permitted if:
$\mathrm{ACl}: \quad \frac{N_{u a}}{N_{\text {des }}} \leq 0.2$
CSA: $\frac{N_{t}}{N_{\text {des }}} \leq 0.2$

2.4.6 Allowable Stress Design (ASD)

The values of $N_{\text {des }}$ and $V_{\text {des }}$ developed from Section 2.4.5 are design strengths (factored resistances) and are to be compared to the required strength in tension and shear from factored load combinations of ACI 318 Chapter 9 or CSA A23.3 Chapter 8.

The design strength (factored resistance) can be converted to an ASD value as follows:

$$
\begin{aligned}
& N_{\text {des }, A S D}=\frac{N_{\text {des }}}{\alpha_{\text {ASD }}} \\
& V_{\text {des, } A S D}=\frac{V_{\text {des }}}{\alpha_{\text {ASD }}}
\end{aligned}
$$

where:
$\alpha_{\text {ASD }}=$ Conversion factor calculated as a weighted average of the load factors for the controlling load combination.

An example for the calculation of $\alpha_{\text {ASO }}$ is as follows:
Controlling strength design load combination is 1.2D
$+1.6 \mathrm{~L}, \%$ contribution is $30 \% \mathrm{D}, 70 \% \mathrm{~L}$

$$
\alpha_{A S D}=1.2 \times 0.30+1.6 \times 0.70=1.48
$$

2.4.7 Seismic Design

To determine the seismic design strength (factored resistance) a reduction factor, $\alpha_{\text {seis }}$, is applied to the applicable table values. This value of $\alpha_{\text {seis }}$ will be in the footnotes of the relevant design tables.

The value of $\alpha_{\text {seis }}$ for concrete / bond / pullout failure is based on 0.75 times a reduction factor determined from testing. The total reduction is footnoted in the tables.

The value of $\alpha_{\text {seis }}$ for steel failure is based on testing and is typically only applied for shear. There is no additional 0.75 factor. The reduction is footnoted in the tables.

The factored load and associated seismic load combinations that will be compared to the design strength (factored resistance) can be determined from ACl or CSA provisions and national or local code requirements. An additional value for $\phi_{\text {non-ductile }}$ may be needed based on failure mode or ductility of the attached components.

2.4.8 Sustained Loads and Overhead Use

Sustained loading is calculated by multiplying the value of ΦN_{n} or N_{r} by 0.55 and comparing the value to the tension dead load contribution (and any sustained live loads or other loads) of the factored load. Edge, spacing, and concrete thickness influences do not need to be accounted for when evaluating sustained loads.

Consideration of sustained loads is based on ACl 318-11 Appendix D. Since sustained loading is not addressed in CSA A23.3 Annex D, it is reasonable to use this approach for CSA based designs.

2.4.9 Accuracy of the Simplified Tables

Calculations using the Simplified Tables have the potential of providing a design strength (factored resistance) that is exactly what would be calculated using equations from ACl 318 Appendix D or CSA A23.3 Annex D.

The tables for the single anchor design strength (factored resistance) for concrete / bond / pullout failure or steel failure have the same values that will be computed using the provisions of ACl and CSA.

The load adjustment factors for edge distance influences are based on a single anchor near an edge. The load adjustment factors for spacing are determined from the influence of two adjacent anchors. Each reduction factor is calculated for the minimum value of either concrete or bond failure. When more than one edge distance and/or spacing condition exists, the load adjustment factors are multiplied together. This will result in a conservative design when compared to a full calculation based on ACI or CSA. Additionally, if the failure mode in the single anchor tables is controlled by concrete failure, and the reduction factor is controlled by bond failure, this will also give a conservative value (and vice versa).

The following is a general summary of the accuracy of the simplified tables:

- Single anchor tables have values equivalent to a calculation according to ACl or CSA.
- Since the table values, including load adjustment factors, are calculated using equations that are not linear, linear interpolation is not permitted. Use the smaller of the two table values listed. This provides a conservative value if the application falls between concrete compressive strengths, embedment depths, or spacing, edge distance, and concrete thickness.
- For one anchor near one edge, applying the edge distance factor typically provides accurate values

EXHIBIT "B"

$(\mathrm{Calc}$	Calc Engineering LLC
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Site Specific Safety Plan

For Construction of steel braces for concrete retaining wall all around the property to provide structural support for the existing concrete retaining wall

Subject Property:

8777 Collins Ave., Surfside, FL, 33154

TO: BOFMAN CONSTRUCTION CO

PREPARED BY
CALC ENGINEERING LLC

Site Specific Safety Plan
 For Construction of steel braces for concrete retaining wall all around the property to provide structural support for the existing concrete retaining wall

Subject Property:
8777 Collins Ave., Surfside, FL, 33154

TABLE OF CONTENTS

Introduction 3
Company Policy 4
Contractor Responsibilities 5
Background and Scope of Work 6
Safety and Emergency Contacts 7
Safety Hazards on Job Site and Considerations 8
Pictures 11
Common Safety Procedures 34
Construction Signage 38

$(\mathrm{Cngineering}$	Calc Engineering LLC
2000 NW 89 PL UNIT 102	
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Site Specific Safety Plan

For Construction of steel braces for concrete retaining wall all around the property to provide structural support for the existing concrete retaining wall.

Address: 8777 Collins Ave., Surfside, FL, 33154

Introduction

The subject property, the collapsed site of the Champlain towers at Surfside, Florida, was visited on Sunday 08/01/2021 and on Thursday 8/5/2021 by Calc Engineering LLC team. Calc Engineering performed visual inspection of walls in order to provide site specific safety plan for the damages and structural issues on remaining concrete walls around the perimeter of the collapsed building before installation of the new steel bracing system.

The Contractor shall have sole and complete responsibility for the implementation of a worksite safety plan and shall take necessary precautions for the health and safety of employees and fully comply with applicable provisions of all sections of 29 CFR 1926-OSHA Construction Industry Safety and Health Standards, 29 CFR 1910-OSHA General Industry Safety and Health Standards, National Fire Protection Association codes, and all standards or codes referred to in the listed document and any other applicable standards.

Due to the changing nature of health and safety regulations, and because new information is constantly becoming available, this plan is subject to change.

(O) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Company Policy

Safety and health of the workforce and general public is the top priority of Calc Engineering. In case of potential safety or health threat, all efforts will be made to minimize or eliminate hazards to personnel, processes, equipment, and the general public. No worker should ever perform a task that may endanger their own safety and health or that of others. All workers must report unsafe activities and potential threats to management and management must take adequate precautions.

This SSSP outlines the Environment, Safety, and Health (ES\&H) requirements and guidelines developed for construction of steel braces for concrete retaining wall all around the property to provide more structural support for existing concrete retaining wall. These requirements are written to help protect site personnel, visitors, and the general public from exposure to potential hazards on this job site. There are several plans and actions that are included to ensure that we act to protect the environment, the general public, as well as the workforce during the construction phase of this project. This plan shall be updated if there are major changes to project conditions, situations, or exposures. An employee acknowledgement form documents that each employee understands the SSSP and will implement these safety and health requirements on this job site.

(O) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Contractor Responsibilities

The contractor, BOFAM Construction Co. must perform safety inspections of their work area and equipment per OSHA requirements, and plan for the safety of the job site by

1- Making periodic inspections and confirm the job site safety
2- Enforce the use of safety equipment and PPE
3- Hold daily meetings to inspect the job site and equipment safety
4- Discuss the hazards with all necessary parties
5- Provide recommendations and address all safety concerns
6- Eliminate potential threats and possibility of accidents and injuries
7- Provide safety orientations and enforce safety rules

All employees must receive a project safety assignment to the project. Topics include but not limited to, Fall Protection, ladder Safety, hazard Communication, lock out/tag out. All employees must complete the contractor's safety orientation and sign the necessary forms. The training records to be maintained electronically and/or on site in the job site office. Should OSHA visit the job site, these training records are one indication of our implementation of an active safety program on this site. Safety meetings to be scheduled to review safety inspections, findings, and corrective actions taken. The project manager should schedule routine meetings in advance or set a regular date/time to be sure that all workers can plan to attend this safety meeting. Records of these meetings should be kept on file in the job site office with attached attendance sheets.

(1)) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

For all observed hazards and provided recommendations, reports must be maintained and submitted to Calc Engineering. If contractor believes there will be delay due to impact of harsh weather conditions, or when the project site is determined to be unworkable, the engineers and site manager shall meet to assess the conditions of construction site. All incidents to be discussed at safety meetings to eliminate the recurrence of such incidents in future. It is the contractor's duty to administer all the common safety procedures and address/manage the safety hazards mentioned in this report.

Contractor shall report all work related injuries, illnesses, first aid cases, near misses, property damage, and environmental incidents such as a spill or release of hazardous materials, regardless of severity, immediately to the Project Superintendent. Contractor shall investigate all incidents and forward copies of the incident report to the Project Superintendent within 4 hours of the incident. An incident report must be provided for: near misses, first aid, recordable injuries, third party property damage or personal injury.

Background and Scope of Work

The subject property, the collapsed site of the Champlain towers at Surfside, Florida, was visited on Sunday 08/01/2021 and on Thursday 8/5/2021 by Calc Engineering LLC team. Calc Engineering performed visual inspection of walls in order to provide site specific safety plan for the damages and structural issues on remaining concrete walls around the perimeter of the collapsed building before installation of the new steel bracing system.

Visual inspections were made of the above described property and photographs were taken for review, and some recommendations were provided to enhance the safety of the workforce against failure of the remaining parts of columns and retaining walls. Calc Engineering cannot say or evaluate those sections that was not visible. Calc engineering only inspected the retaining walls and did not inspect other

Calc Engineering	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

sections. Calc Engineering believes that after the site is drained completely, the area around the remaining columns needs to be secured, the remaining rebars need to be cut. The hanging concrete parts must be removed. The remaining of the 7 ' privacy concrete wall need to be completely removed or secured. The ramp access must be extended for safe travel of construction equipment. All the exposed rebars on the concrete floor need to be cut.

Our recommendation in this report is proper and applicable for the time of inspection, and not for future. It is our purpose to provide information on the condition of the structure on the day of the inspection and not to provide discussions or recommendations concerning the future maintenance of the structure.

Safety and Emergency Contacts

Contacts	
Project Manager	Austin G. Akinrin (BOFAM Construction Co.)
Site Name	Champlain Towers
Site Address	8777 Collins Ave., Surfside, FL 33154
Local Police, Ambulance, and Fire Dept.	911
Local Hospital: Mount Sinai Medical Center	Tel: (305) 674-2200 and (305) 396-3219
	Address: 4300 Alton Road, Miami Beach, FL 33140
Local Contractor's Office	1600 NW 3
	Tel: Ave, Suite D4, Miami, FL 33136

$(\mathrm{CaPC}$	Calc Engineering LLC
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Direction to closest Hospital:

Safety Hazards on Job Site and Considerations

1. At all times during the construction, the area of the work must be dry. After the area is completely dry, contractor needs to confirm there are no slippery areas on the concrete floor before and during the construction period (Figure 1).
2. There are concrete columns in middle of the site with exposed rebars that are structurally unsafe and unsecured. The columns are detached and may collapse, Calc Engineering recommends removing or securing all columns to avoid any incidents (Figure 2).

(〇) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

3. There's a 7 ' high privacy concrete wall unbraced and unsecured on side of the $87^{\text {th }}$ terrace around the pool area. Multiple large cracks are visible on the structure. Calc Engineering recommends that concrete privacy wall to be removed or engineering plans required to secure the wall. The wall is not safe during hurricane event and may collapse (Figure 3).
4. Ramp access for the construction equipment is not wide enough for travel of construction equipment and is not secured from one side, contractor to extend the width of the ramp or temporary pile sheets to be included in that area (Figure 4).
5. Concrete beams and columns around pool are all damaged. The columns are damaged, with large cracks visible on the structure, the concrete slab is unreinforced and damaged, the pool area is extremely unsafe and must be secured or completely demolished before construction of bracing systems starts. (Figure 5).
6. Rebars hanging from all around of the existing concrete walls to be cut before the construction starts (Figure 6).
7. All hanging broken concrete pieces and debris must be removed before the start of construction of the steel bracing system (Figure 7).
8. The remaining floor/slab on corner of 88 St and the ocean side is unsafe (Northeast corner of the site) needs to be removed or secured (Figure 8) before construction of bracing systems starts.
9. All rebars on the concrete floor to be removed or secured to prevent any incident during the construction (Figure 9).
10. The debris and remaining rubble on top of all walls need to be removed, may fall during the construction.

Calc Engineering recommends demolishing or securing the hazard areas mentioned (Pool area, concrete wall around pool area, the concrete floor on Northeast corner on side of 88 St ., all remaining columns, all remaining exposed hanging rebars and broken/damaged concrete pieces and remaining rebars on concrete floor).

Calc Engineering	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

All damages on the surface of the concrete wall must be repaired before the construction starts. The structural plans provided by Calc Engineering are temporary and for duration of six months. The condition of steel plate and bracings need to be checked after 6 months.

Since the bracing design is with assumption of having the first lane and walkway of Collins Ave. closed; in case they are opened or any extra load is applied, the structural and safety plans need to be checked.

As mentioned in project prioritization section, the first priority for the construction is the wall on the side of Collins Ave., second priority is the side of 88th St and third is the size of 87 terrace and last is the ocean side.

The figures below display some of the hazards mentioned above.

Calc Engineering	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 3 355-89-9995 www.calceng.com

Pictures

Figure 1: The area must be fully drained

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 2(a): view of columns with exposed rebars

Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172
Phone: 305-898-9995

Fig 2(b): detached and damaged columns

(P) Cale	Calc Engineering LLC
Engineering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
	www.calceng.com

Fig 2(c) damaged columns with exposed rebars present threat to workers safety.
Figure 2: Columns with exposed rebars to be secured or removed.

$(\mathrm{Calc}$	Calc Engineering LLC
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Fig 3(a) unbraced and unsafe damaged concrete wall

Fig 3(b): cracks visible on the unbraced wall

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 3(c) cracks on the unbraced concrete wall
Figure 3: Unbraced 7' concrete wall on side of $87^{\text {th }}$ Terrace around pool area, large cracks visible (the wall is unbraced and unsecure, may collapse during hurricane).

Figure 4: Ramp not wide enough needs to be extended for travelling of future heavy construction equipment.

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Figure 5 (a): Pool area must be secured.

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 5 (b) Column detached, beam cracked, broken concrete hanging

$(\mathrm{CalC}$	Calc Engineering LLC
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Fig 5 (c) Cracks under the pool area

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phyineering Phone: 305-898-9995 www.calceng.com

Fig 5 (d) Hanging rebars and broken concrete, separation of concrete slab.

Fig 5(e) Concrete slab is unreinforced and damaged, may collapse
Figure 5: Damaged area under pool. Cracks and spalling, concrete separation and cracks, hanging rebars and broken concrete.

Calc Engineering LLC
2000 NW 89 PL UNIT 102
DORAL FL 33172
Phone: 305-898-9995 www.calceng.com

Fig 6 (a) Hanging rebars on side of $87^{\text {th }}$ Terrace

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 6 (b) Hanging rebars on side of Collins Ave.

Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172
Phone: 305-898-9995 www.calceng.com

Fig 6 (c) Hanging rebars on side of Collins Ave.

Fig 6 (d) Hanging rebars on side of 88 street.

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 6(e) Hanging rebars on ocean/east side.

Figure 6: Hanging rebars on all concrete walls to be removed.

Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172
Phone: 305-898-9995 www.calceng.com

Fig 7 (a) Broken concrete on side on $87^{\text {th }}$ Terrace

Fig 7 (b) Broken concrete on side on $87^{\text {th }}$ Terrace

Fig 7 (c) Broken concrete on side of Collins Ave.

Fig 7 (d) Broken concrete on side of Colins Ave.

(P) Calc	Calc Engineering LLC Engineering
	2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Fig 7(e) Broken concrete on side of Collins Ave.

Fig 7(f) Broken concrete to be removed on the ocean/east side.

Fig 7(g) Broken concrete to be removed on the ocean/east side.

Figure 7: Damaged/broken concrete pieces to be removed on all walls.

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phyineering www.calceng.com

Figure 8: East corner of 88 St . to be secured or the slab to be removed.

Figure 9: Rebars to be removed from concrete floor

Engúneering	Calc Engineering LLC
2000 NW 89 PL UNIT 102	
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

Common Safety Procedures

The contractor is required to follow general safety and health provisions as required by OSHA. It is contractors' responsibility to provide safety training and education, provide first aid and medical attention, prepare ventilation systems when required, provide fire extinguishers, properly dispose of debris and hazardous materials, and record and report the injuries.

Hazard Communication Standard- 29CFR 1910.1200

1. A list of hazardous substances must be available for all employees.
2. Proper training is required for work force to identify the location of hazards, MSDS safety data sheet, protective measures to be taken, and details of hazard communication program.
3. Employees must be aware of all potential hazards and be trained for handling the hazardous materials used in the workplace.
4. All employees must use personal protective equipment.
5. Proper control procedures are to be established for handling of hazardous materials.

Housekeeping- 29 CFR 1910.22 and/or 29 CFR 1926.25

1. All work surfaces must be kept clean, dry and slip resistant.
2. Any spill of hazardous materials, liquid, blood, and infectious materials must be cleaned up properly immediately.
3. Debris and waste must be removed from the worksite properly .

Hand and Power Tools- 29 CFR 1926 Subpart I or 29 CFR 1910 Subpart P

1. All equipment must be provided with appropriate safety guards.
2. Power tools shall be used with proper shields, guards, or attachments, as recommended by the manufacturer.
3. Electrically operated tools and equipment must be grounded.
4. All tools and equipment must be kept in good condition.

Mechanized Equipment- 29 CFR 1926 Subpart 0

1. Employees must be trained or be licensed to operate any mechanized equipment.
2. Does the mechanized equipment have a warning horn, whistle, gong, or other device that can be clearly heard above normal noise in the areas where it is operated.
3 . If any equipment requires repairs, it should be removed from worksite immediately.

Trenching and Shoring- 29 CFR 1926 Subpart P

1. The safety representative must be present at all times on site.

$(\mathrm{CaPc}$	Calc Engineering LLC
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

2. Workers must be protected from cave-ins in all demolition parts by an adequately designed protective system.
3. Work must be done only in areas protected by sloping and benching, a support system, or a shield system.
4. Material and equipment used for protective systems must be the right size and in good condition.
5. The safety inspector checks the site (a) every day before work, (b) after every rainstorm, and (c) as needed, for evidence of possible cave-ins, failure of systems, hazardous atmospheres.

Traffic Control- 29 CFR 1926 Subpart G

1. All passageways must be kept clear and arranged such that the employees operating machineries are kept safe at all times.
2. Exposed rebars, holes and defects in the floor, sidewalk and all walking surfaces must be kept covered and secured.
3. Spilled material must be cleaned immediately.

Fall Protection- 29 CFR 1926 Subpart M and/or 29 CFR 1926 Subpart X

1. Ladders must be kept in good condition, joints between steps and side rails kept tight, all hardware and fittings must be securely attached, and moveable parts should operate freely. Employees are prohibited from using ladders that are broken, missing side rail, and are in any way defective.
2. non-slip safety feet must be provided on each metal or rung ladder. All ladders must be free of grease and oil.
3. All ladders must be inspected for damages.
4. Floor openings must be guarded and secured.

PPE- 29 CFR 1910 Subpart I

1. All employees must wear proper PPE for head, eye, face, hand, and foot protection.

Employees must be trained on PPE use procedure, which PPE is required, when to use them and how to properly adjust them.
2. Due to the hazards identified, all employees must wear protective gloves, hard hats, safety glasses, foot protection and safety vest.

Lock-out/ Tag-out- 29 CFR 1910.147

1. All machinery are required to be de-energized or disengaged and blocked or locked out during cleaning, servicing, and adjusting. Ensure control circuit is disconnected and locked out for electrical equipment.

Calc Engineering	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

2. The stored energy (mechanical, hydraulic, air, etc.) must be released or blocked before equipment is locked out for repairs.
3. Employees working on locked-out equipment have to be identified (by their locks or accompanying tags).

Hot Work- 29 CFR 1910 Subpart Q

1. Only authorized and trained personnel are permitted to use welding, cutting, or brazing equipment.
2. Signs to be posted reading "DANGER, NO SMOKING, MATCHES, OR OPEN LIGHTS," or the equivalent.
3. Safety glasses required to be worn at all times in areas where there is a risk of eye injuries such as punctures, abrasions, contusions, or burns.
4. Verify that the eye protection, helmets, hand shields and goggles meet appropriate standards.
5. Adequate ventilation required where welding or cutting is performed.
6. Fire extinguishing equipment must be made available in the worksite.

Environmental- 29 CFR 1910 Subpart J

1. Use wet methods and air intakes to eliminate the risk of contaminated air, dust or similar hazards.
2. Employees must be made aware of the hazards involved with the various chemicals they may be exposed to in their work environment, such as ammonia, chlorine, epoxies, caustics.

Occupational Health- 29 CFR 1910 Subpart K

1. Employees are prohibited from smoking or eating in any area where contaminants are present.
2. First aid kits supplied in each work area and periodically being inspected.
3. Emergency phone numbers to be posted.
4. Prepare an eye-wash station or sink for quick drenching or flushing of the eyes and body in areas where corrosive liquids or materials are handled.

Removal of Bonded Asbestos Containing Materials (ACM)

1. Asbestos Containing Material (ACM) means any material, object, product or debris that contains asbestos.

(1)) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

2. ACM related work means any work that involves working on (drilling, cutting, scraping, cleaning, repairing etc), removing or working in close proximity to, installed ACM.
3. Bonded ACM means asbestos containing materials (ACM) containing a bonding compound reinforced with asbestos fibers.
4. Refer to the on-site Building Management Plan (BMP) prior to carrying out any work to determine the type and location of any ACM (eg. asbestos-cement sheeting, vinyl tiles) that may be present. If the on-site Building Management Plan is not available then contact the Regional Safety/Asbestos Coordinator to examine the duplicate copy at the Regional Office to verify the presence/location of ACM.
5. If ACM is suspected (due to the age of the building and/or local knowledge) and there is no Building Management Plan and/or Asbestos Register on site, then an experienced and competent person is to undertake an inspection to identify the presence, type and location of any ACM that may be present prior to any work being carried out. If a competent person is also not available, then any suspect materials/products must be presumed to contain asbestos and is to be removed and disposed of as ACM in accordance with (company name) Standards and Legislative requirements.
6. The need for air monitoring is to be determined and documented by a competent person who is independent of the person responsible for the removal work, prior to any ACM related work being carried out.
7. All work involving ACM (removal, drilling, cutting of penetrations, scraping, repairing and/or clean-up etc.) is to be performed outside the normal operating hours of the facility/building and/or when the facility/building is unoccupied by arrangement with the owner/tenant.

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

Construction Signage

The contractor is to ensure the placement of signs to prevent the access of unauthorized personnel to the site or hazardous work areas during construction and/or hazardous operations. Barricades/hoardings/fencing are to be of a standard construction that clearly defines and restricts all unauthorized personnel from entering the work area and exclusion zones and are to be erected in accordance with Statutory Authorities and manufacturers requirements. Access points must be kept always closed when personnel are not using them to enter and exit the work area.

1. SITE SAFETY SIGNS

HARD HATS
REQUIRED
ON THIS
JOB SITE
ALL VISITORS MUST
REPORT TO SITE
OFFICE OR
SUPERINTENDENT
BEFORE ENTERING
JOB SITE

$(\mathrm{CaP}$) Calc Engineering LLC	
Engúneering	2000 NW 89 PL UNIT 102
DORAL FL 33172	
Phone: 305-898-9995	
www.calceng.com	

2. CONSTRUCTION ENTRANCE SIGNS

CAUTION
ENTERING CONSTRUCTION ZONE
3. CONSTRUCTION EXIT SIGNS

(1)) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

4. CONSTRUCTION AREA SIGNS

5. SIDEWALK SIGNS

(P) Calc	Calc Engineering LLC 2000 NW 89 PL UNIT 102 DORAL FL 33172 Phone: 305-898-9995 www.calceng.com

6. CAUTION TAPE

CAUTION CAUTION CONSTRUCTION AREA

CAUTION
 CAUTION OPE TRENCH

CAUTION

CAUTION DO NOT ENTER

The following references have been used in preparation of this report:
1-https://www.osha.gov/
2-https://www.ridemetro.org/
3- https://safetyrisk.net/wp-content/uploads/downloads/2010/06/whs_construc-safe-plan_all.pdf

EXHIBIT "C"

NOTE：ALL SHEETS MUST BE REVIEWED

DEPARTMENT OF REGULATORY AND ECONOMIC RESOURCES

Herbert S．Saffir Permitting and Inspection Center
11805 SW 26th Street（Coral Way），• Miami，Florida 33175－2474 •（786）315－2000
123．01－12 MNOE 1 EIT PERMIT APPLICATION

IF SUBSIDIARY PROVIDE MUSTER PERMAT NUMBER HERE			
年鲐	Job Address 8777 Collins Avenue Folio 14－2235－025－ Lot \qquad Block Subdivision \qquad PBpg －． Metes and bounds \qquad		Contractor No．CGC062660 Last four（4）digits of Qualifier No． 6086 Contractor Name Bofam Constuction Co ，Inc Qualifier Name Gbolahan Austin Akinrin Address 1600 NW 3rd Avenue Ciy Miami Stote FL Zip 33136
			Current use of property Vacant \qquad Description of Work \qquad Surfside Emergency Shoring Sq．Ft． \qquad Units \qquad Floors \qquad Value of Work \＄500，000
皆			Owner Miami Dade County－Police Address 9105 NW 25 Street City Doral State FL Zip 33172 Phone \qquad Last four（4）digits of Owner＇s Social Security No． \qquad
\％ 0	Name Austin Akinrin Address 1600 NW 3rd Aveue Ciy Miami State FL Zip 33136 Phone（754）245－0102	ㄷㅡㅡㄹ	Name Calc EngineeringAddress 200 NW 89 Place，Unit 102Ciry Doral \quad State FL＿Zip 33172 Phone（305） 898－9995
萑	Name \qquad Address \qquad City \qquad State \qquad Zip Phone \qquad	器	Name \qquad Address Cily \qquad State \qquad Zip Phone \qquad

＊See reverse sida for Building Categary
Application is hereby made to obtain a permit to do work and installation as indicoted．I certily that all work will be performed to meet the standards of oll laws regulating construc－ fion in this jurisdiction．I understand that separate permits are required for ELICTRICAL PLUMAINGG，SIONS，POOLS，MECHANICAL，WINDOW，SHUTIERS OAS ROOFIBG WORK and thete moy be odditionol permits required for other governmentol anties
OWNER＇S／PEBMTT APPLICANT AFHIOAVIT I certily thot all of the foregoing informotion is occurate．I certily that I am not a nomed violotor with：unpald civil penolsies，unpoid odministrative costs of hearing：unpoid County investigative，enforcement，testing，of monitoting conts；or unpoid liens，any or oll of which ore owed so MiomiDade County pursuant to the provisions of the Code of MiamiDode County．Flotida．

＂The issuance of the permit does not telievs the property owner from obtaining homeowner＇s association approvol fif requing pigy to beginning ans work ond in no way outhorizes work that is in violation of any associotion rule or regulation．＂
Signalure of Owner or Owner＇s Agent
PRINT NAME
STATE OF FLORIDA COUNTY OF MLAMIDADE
Sworn to and subscribed before me this

day of \qquad , 20 \qquad
by
Signoture of Notary Public
Print Name
（SEAL）
Personally known
or Produced Idenlification

Class V Dewatering Permit Application Form

For Departmental Use Only
Date Received: \qquad Application \#:

Fee Received: \qquad

Tracking \#:

1. Checklist:
\square Application Fee: Dependent upon duration of dewatering permit (all fees include a 7.5% RER surcharge): $\square 6$ days or less $\$ 520.00+\$ 39.00=\$ 559.00^{*}$ $\square 7-30$ days $\$ 635.00+\$ 47.63=\$ 682.63^{* *}$ $\square 31-90$ days $\$ 980.00+\$ 73.50=\$ 1053.50^{* *}$
Note: After-the-Fact Permit applications will be charged a penalty fee amounting to 100% of the original fee, plus departmental administrative enforcement costs.
\square Complete description of dewatering operation ***
\square Complete dewatering operation calculations***
\square Site Plan (site plan shall include project boundaries, location of proposed dewatering activity, sedimentation tanks, turbidity barriers, discharge points, berms, monitoring points, etc.)***

* Permit issued for less than 30 days, CANNOT BE EXTENDED, a new permit application will be required.
** Time extension requests have to file at least thirty calendar days prior to the time of permit expiration.
*** Must be signed and sealed by an engineer, architect or land surveyor, licensed in the State of Florida.

2. Project Information:

Project Name: Surfside Emergency Shoring
Folio \#: 14-2235-025-
This application is for $a(n)$: \quad New Permit \square After the Fact Permit
Location: 8777 Collins Avenue, Surfside, FL 33154
Section: \qquad Township: \qquad Range: \qquad
Municipality: \qquad
Proposed starting date: $8 / 1 / 2021$
Estimated completion date: $8 / 30 / 2021$
\square Yes
\square No
\square Unknown

Is the proposed work in a contaminated site? If yes, see Attachment " B "
3. Applicant Information:
This should be the applicant's information for contact purposes.
Name: Austin Akinrin
Company: Bofam Construction Co, Inc

Address: 1600 NW 3rd Avenue	
Miami, FL	Zip Code: 33136
Phone \#: $754-245-0102$	Fax: $305-675-9269$
Email: Austin@bofaminc.com	

5. Contractor Information:

Name: Austin Akinrin License \# (County/State): CGC062660
Company: Bofam Construction Co, Inc
Address: 1600 NW 3rd Avenue, Miami, FL Zip Code: 33136
Phone \#: 754-245-0102 Fax\#: 305-675-9269 Email: Austin@bofaminc.com

6. Performance Bond and/or Mitigation Fee: (to be assessed by Water Control Section)

- This permit may require a performance bond to guarantee that work is accomplished according to plan and that no impact to adjacent properties is generated as a result of the permitted dewatering activity.
- A mitigation fee may be required to compensate for any loss of or impact to natural resources due to the extent and duration of the dewatering activity.

7. APPLICANT AFFIRMATION:

Application is hereby made for a Miami-Dade County Class V permit to authorize the activities described herein. I agree to or affirm the following:

- I possess the authority to authorize the proposed activities at the subject property, and
- I am familiar with the information, date and plans contained in this application, and
- To the best of my knowledge and belief, the information, data and plans submitted are true, complete and accurate, and
- I will apprise the Department of any changes to information provided in this application, and
- I will provide any additional information, evidence or data necessary to provide reasonable assurance that the proposed project will comply with the applicable State and County water quality standards both during construction and after the project is completed, and
- I am authorizing the permit agent listed in Section 4 of this application to process the application, furnish supplemental information relating to this application and bind the applicant to all requirements of this application, and
- I agree to provide entry to the project site to inspectors and authorized representatives of Miami-Dade County, with proper identification or documents as required by law, for the purpose of preliminary analysis, verification, sampling, monitoring, and observation of permitted activities.

A. IF APPLICANT IS AN INDIVIDUAL

B. IF APPLICANT IS OTHER THAN AN INDIVIDUAL OR NATURAL PERSON
 (Examples: Corporation, Partnership, Trust, LLC, LLP, etc.)

Bofam Construction Co, Inc Corp

Print Name of Applicant (Enter the complete name as registered) Type (Corp, LLC LLP, etc.) State of Registration/Incorporation
Under the penalty of perjury, I certify that I have the authority to sign this application on behalf of the Applicant, to bind the Applicant, and if so required, to authorize the issuance of a bond on behalf of the Applicant. (If asked, you must provide proof of such authority to the Department). Please Note: If additional signatures are required, pursuant to your governing documents, operating agreements, or other applicable agreements or laws, you must attach additional signature pages (ATTAGHMENT " A ").

Print Name of Applicant (Enter the complete name as registered) Type (Corp, LLC LLP, etc.) State of Registration/Incorporation
Print Name of Applicant (Enter the complete name as registered) Type (Corp, LLC LLP, etc.) State of Registration/Incorporation

Under the penalty of perjury, I certify that I have the authority to sign this application on behalf of the Applicant, to bind the Applicant, and if so required to authorize the issuance of a bond on behalf of the Applicant. (If asked, you must provide proof of such authority to the Department). Please Note: If additional signatures are required, pursuant to your governing documents, operating agreements, or other applicable agreements or laws, you must attach additional signature pages (ATTACHMENT "A").

$\overline{\text { Signature of Authorized Representative }} \overline{\text { Print Authorized Representative's Name }} \overline{\text { Title }} \overline{\text { Date }}$	
$\overline{\text { Signature of Authorized Representative }} \overline{\text { Print Authorized Representative's Name }} \overline{\text { Title }}$	

[^0]: ${ }^{1}$ The relief sought in this Motion is directly related to the relief sought in a prior motion filed by the Receiver (Filing \# 132119264) on August 5, 2021 seeking entry of an order authorizing him to sign a permit application requested by the County authorizing Bofam to undertake emergency work to brace all of the retainment walls at the former site of the Property (the "Initial Motion"). The instant Motion also concerns the bracing of retainment walls at the former site of the Property, but is focused solely on bracing the west retaining wall so that additional lanes of Collins Avenue adjacent to the west side of the Property can safely be opened.
 ${ }^{2}$ The County has also requested the Receiver to execute a permit application for "dewatering" work on the Property. It is the Receiver's understanding that certain pipes will be placed on top of the foundation that will continually remove water from the Property. The Receiver was hoping to file the motion to authorize him to execute the "dewatering" permit application simultaneously herewith, however, the County has not yet received approval from DOT to pump the water into DOT controlled storm drains which is part of the plan. It is expected that a motion to authorize the Receiver to execute the dewatering permit application will be filed in the near future.

[^1]: 3 The Safety Report was obtained by the County in early August in connection with the original intended scope of work which was to buttress all the retaining walls and was contemplated in the permit application which was the subject of the Initial Motion. The current permit application the County has requested the Receiver to execute which is the subject of the instant motion seeks only to buttress the western retaining wall adjacent to Collins Avenue. Accordingly, the scope of the Safety Report is much broader than the requirement to make the Property safe for Bofam to buttress the western retaining wall.

[^2]: ${ }^{4}$ The County has represented to the Receiver that the only rebar or cement that will be removed or otherwise altered is the rebar and loose concrete associated with the western retaining wall of the Property and rebar and loose cement approximately 20 feet inward on the side walls (north and south) adjoining the west wall.

[^3]: ${ }^{5}$ In fact, it is the Receiver's understanding that certain areas of the Property are considered so dangerous that even NIST was not able to safely access them.

[^4]: ${ }^{6}$ To the extent there is a conflict between the Access Protocol and the Order emanating out of this Motion, the terms of the Order shall take priority with respect to the access being granted to view and film the west retaining wall.
 ${ }^{7}$ The County has graciously agreed to provide a dozen helmets and reflective vests. To the extent more than a dozen people request permission to enter the Property, the Receiver shall coordinate access to the property is separate groups of 12 or less.

[^5]: *"Sloping Backfill" designs are conservatively based upon values from the AREA Manual chart. See Figure 14-5.

[^6]: Maximum pin force for $\mathrm{RSS}=11,3 \mathrm{kN}$
 Resulting wind loads:

